首页> 外文期刊>Computers & Structures >Method of fundamental solutions without fictitious boundary for plane time harmonic linear elastic and viscoelastic wave problems
【24h】

Method of fundamental solutions without fictitious boundary for plane time harmonic linear elastic and viscoelastic wave problems

机译:平面时间谐波线性弹性和粘弹性波问题的无虚拟边界的基本解法

获取原文
获取原文并翻译 | 示例

摘要

This study makes the first attempt to apply a recently developed modified method of fundamental solutions (MFS) without fictitious boundary, which is named as the singular boundary method (SBM), to the solution of plane linear elastic and viscoelastic wave problems. Like the standard MFS, the SBM applies the fundamental solutions of the governing equations of interest as the basis functions. Unlike the standard MFS, the SBM, however, does not require the fictitious boundary outside physical domain to avoid the singularity of the fundamental solution and instead directly places the source points on the physical boundary coinciding with collocation points via the concept of origin intensity factors. To demonstrate the effectiveness of the SBM for plane elastic and viscoelastic wave problems, several numerical examples are given in comparison with analytical solutions, and numerical results of the MFS and the finite element method.
机译:这项研究首次尝试将最近开发的无虚拟边界的基本解(MFS)的改进方法(称为奇异边界法(SBM))应用于平面线性弹性和粘弹性波问题的求解。像标准MFS一样,SBM应用感兴趣的控制方程的基本解作为基本函数。然而,与标准MFS不同,SBM不需要物理域外的虚拟边界来避免基本解决方案的奇异性,而是通过起源强度因子的概念将源点直接放置在与配置点一致的物理边界上。为了证明SBM在平面弹性和粘弹性波问题上的有效性,与解析解,MFS和有限元方法的数值结果相比较,给出了几个数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号