首页> 外文期刊>Computers & Structures >Comparison between Karhunen-Loeve and wavelet expansions for simulation of Gaussian processes
【24h】

Comparison between Karhunen-Loeve and wavelet expansions for simulation of Gaussian processes

机译:Karhunen-Loeve与小波展开在高斯过程模拟中的比较

获取原文
获取原文并翻译 | 示例

摘要

The series representation consisting of eigenfunctions as the orthogonal basis is called the Karhunen-Loeve expansion. This paper demonstrates that the determination of eigensolutions using a wavelet-Galerkin scheme for Karhunen-Loeve expansion is computationally equivalent to using wavelet directly for stochastic expansion and simulating the correlated random coefficients using eigen decomposition. An alternate but longer wavelet expansion using Cholesky decomposition is shown to be of comparable accuracy. When simulation time dominates over initial overhead incurred by eigen or Cholesky decomposition, it is potentially more efficient to use a shorter truncated K-L expansion that only retains the most significant eigenmodes.
机译:由特征函数作为正交基础的级数表示称为Karhunen-Loeve展开。本文证明,使用小波-Galerkin方案对Karhunen-Loeve展开确定本征解在计算上等同于直接使用小波进行随机展开并使用本征分解模拟相关的随机系数。使用Cholesky分解的另一种但更长的小波展开被证明具有相当的精度。当仿真时间超过因本征或Cholesky分解而引起的初始开销时,使用较短的截短K-L展开仅保留最重要的本征模可能更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号