首页> 外文期刊>Computers & Structures >A coupled boundary element/finite difference method for fluid-structure interaction with application to dynamic analysis of outer hair cells
【24h】

A coupled boundary element/finite difference method for fluid-structure interaction with application to dynamic analysis of outer hair cells

机译:流体-结构相互作用的边界元/有限差分耦合方法在外毛细胞动力学分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

Outer hair cells (OHC) in the inner ear, which resemble fluid-filled and fluid-surrounded cylinders, are known to exhibit motility and play a critical role in our keen sense of hearing. In this study, we investigate the OHC frequency response using a mathematical model of the OHC, which consists of a two-layered anisotropic cylindrical lateral wall, and both the intracellular and extracellular fluids. We use the boundary integral equations to model the intracellular and extracellular fluids, and these are coupled to the anisotropic cylindrical shell equations fdiscretized using the finite difference method). Since the geometry is axisymmetric, the dynamic analysis is performed by decomposing the motion into Fourier modes in the circumferential direction. For the boundary element method, this leads to two sequences of line integrals along the generator of the domain, and the singular kernels need to be evaluated with elliptic integrals. The coupled fluid-structure equations are solved for several modes of deformation (axisymmetric, cylindrical beam-bending, and pinched modes), and the frequency responses are obtained. The frequency response of the model with viscous fluid is found to be significantly different from that using inviscid fluid. For the small length scale of the OHC (which is of micron size), the viscosity of the fluid is found to have significant damping effects on the OHC frequency response.
机译:内耳中的外毛细胞(OHC)类似于充满液体和环绕液体的圆柱体,已知具有运动性,并且在我们敏锐的听觉中起关键作用。在这项研究中,我们使用OHC的数学模型来研究OHC频率响应,该模型由两层各向异性的圆柱形侧壁以及细胞内和细胞外液组成。我们使用边界积分方程对细胞内和细胞外液进行建模,并将它们与使用有限差分法离散化的各向异性圆柱壳方程组耦合。由于几何形状是轴对称的,因此通过在圆周方向上将运动分解为傅立叶模式来执行动力学分析。对于边界元方法,这会导致沿域的生成器生成两个线积分序列,并且需要使用椭圆积分来评估奇异核。求解了几种变形模式(轴对称,圆柱束弯曲和收缩模式)的耦合流体结构方程,并获得了频率响应。发现使用粘性流体的模型的频率响应与使用粘性流体的模型的频率响应明显不同。对于OHC的小长度刻度(微米级),发现流体的粘度对OHC频率响应具有显着的阻尼作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号