首页> 外文期刊>Computers & Structures >Adaptive Explicit Decision Functions For Probabilistic Design And Optimization Using Support Vector Machines
【24h】

Adaptive Explicit Decision Functions For Probabilistic Design And Optimization Using Support Vector Machines

机译:支持向量机用于概率设计和优化的自适应显式决策函数

获取原文
获取原文并翻译 | 示例

摘要

This article presents a methodology to generate explicit decision functions using support vector machines (SVM). A decision function is defined as the boundary between two regions of a design space (e.g., an optimization constraint or a limit-state function in reliability). The SVM-based decision function, which is initially constructed based on a design of experiments, depends on the amount and quality of the training data used. For this reason, an adaptive sampling scheme that updates the decision function is proposed. An accurate approximated explicit decision functions is obtained with a reduced number of function evaluations. Three problems are presented to demonstrate the efficiency of the update scheme to explicitly reconstruct known analytical decision functions. The chosen functions are the boundaries of disjoint regions of the design space. A convergence criterion and error measure are proposed. The scheme is also applied to the definition of an explicit failure region boundary in the case of the buckling of a geometrically nonlinear arch.
机译:本文介绍了一种使用支持​​向量机(SVM)生成显式决策函数的方法。决策函数定义为设计空间的两个区域之间的边界(例如,优化约束或可靠性的极限状态函数)。基于SVM的决策功能最初是根据实验设计构建的,取决于所使用的训练数据的数量和质量。因此,提出了一种更新决策函数的自适应采样方案。通过减少数量的函数评估就可以获得准确的近似显式决策函数。提出了三个问题,以证明更新方案显式重构已知分析决策功能的效率。选择的功能是设计空间不相交区域的边界。提出了收敛准则和误差度量。在几何非线性拱形结构屈曲的情况下,该方案也适用于明确的失效区域边界的定义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号