首页> 外文期刊>Computers & Structures >Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh
【24h】

Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh

机译:基于非结构网格的基于水平集的几何非线性结构拓扑形状优化

获取原文
获取原文并翻译 | 示例
       

摘要

Using hyperelastic materials and unstructured mesh, a level set based topological shape optimization method is developed for geometrically nonlinear structures in total Lagrangian framework. In the level set method, the initial domain is kept fixed and its boundary is represented by an implicit moving boundary embedded in a level set function, which facilitates to handle complicated topological shape changes and eventually leads the initial implicit boundary to an optimal one according to the normal velocity field while both minimizing the objective function of instantaneous structural compliance and satisfying an allowable material volume constraint. In existing level set based methods, an initial reference domain or an ersatz material is employed for the penalization of whole domain to represent the current domain. However, these approaches end up with a convergence difficulty in nonlinear response analysis due to the inaccurate tangent stiffness. To overcome this difficulty, taking advantage of the obtained level set function, the current structural boundary is actually represented using a Delaunay triangulation scheme and a hyperelastic material law is employed to handle the large strain problem. The required velocity field in the actual domain to update the level set equation is determined from the descent direction of Lagrangian derived from optimality conditions. The velocity field outside the actual domain is determined through a velocity extension scheme based on a fast marching method. Since homogeneous material property and actual boundary are utilized, the convergence difficulty is significantly relieved.
机译:使用超弹性材料和非结构化网格,针对总拉格朗日框架中的几何非线性结构,开发了一种基于水平集的拓扑形状优化方法。在水平集方法中,初始域保持固定,并且其边界由嵌入在水平集函数中的隐式移动边界表示,这有助于处理复杂的拓扑形状变化,并最终根据法向速度场,同时最小化瞬时结构顺应性的目标函数并满足可允许的材料体积约束。在基于现有水平集的方法中,采用初始参考域或ersatz材料对整个域进行惩罚以表示当前域。然而,由于切线刚度的不准确,这些方法最终在非线性响应分析中存在收敛困难。为了克服这个困难,利用获得的水平集函数,实际上使用Delaunay三角剖分方案表示当前的结构边界,并采用超弹性材料定律来处理大应变问题。根据最佳条件得出的拉格朗日下降方向确定实际域中更新水平集方程所需的速度场。实际域外的速度场是通过基于快速前进方法的速度扩展方案确定的。由于利用了均质的材料特性和实际边界,因此大大降低了收敛难度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号