首页> 外文学位 >Shape sensitivity analysis and optimization of skeletal structures and geometrically nonlinear solids.
【24h】

Shape sensitivity analysis and optimization of skeletal structures and geometrically nonlinear solids.

机译:形状敏感性分析以及骨骼结构和几何非线性实体的优化。

获取原文
获取原文并翻译 | 示例

摘要

Formulations and computational schemes for shape design sensitivity analysis and optimization have been developed for both skeletal structures and geometrically nonlinear elastic solids. The continuum approach, which is based on the weak variational form of the governing differential equation and the concept of the material derivative, plays a central role in such a development.;In the first part of this work, the eigenvalue and eigenvector sensitivity equations for skeletal structures are derived with respect to configuration variables of joint and support locations. This derivation is done by the domain method as well as the boundary method. The discrete approach for the eigenvalue and eigenvector sensitivity analysis is also presented for the purpose of numerical comparison. The resultant sensitivity equations are first validated by a cantilever beam for eigenvalue sensitivity analysis and a simply-supported beam for eigenvector sensitivity analysis. The analytical solutions can be easily obtained for both examples. Moreover, the investigation of numerical accuracy and computational efficiency of these sensitivity equations is done with examples of several skeletal structures. The results show that the domain method has an advantage to be both computationally accurate and efficient. Finally, a design optimization of a vibrating beam is presented to investigate the effects of including the support locations and the support stiffness constants as design variables on the design. It is concluded that the support locations and the support stiffness constants are important to improve the quality of design.;The second part of this thesis explores the possibility using the Eulerian formulation as the foundation for shape sensitivity analysis and optimization of a new class of design problems in which the performance criteria are defined in the deformed configuration of a geometrically nonlinear elastic solid. The displacement and rotation of this nonlinear elastic solid are assumed to be large while its strain is assumed to be small. Shape sensitivity equations are derived based upon the Eulerian formulation as well as the total Lagrangian formulation for a general functional. A prismatic bar is evaluated analytically to validate these sensitivity equations. A design optimization scheme is then established which uses the Eulerian formulation for analysis as well as sensitivity analysis, to design the shape of a uniformly loaded beam to minimize the area subjected to geometric and stress constraints. The results show that the proposed sensitivity equations and the design scheme work well for this example.
机译:已经开发出用于骨架设计和几何非线性弹性固体的用于形状设计灵敏度分析和优化的配方和计算方案。基于控制微分方程的弱变分形式和物质导数概念的连续方法在这种发展中起着核心作用。在本工作的第一部分,本征值和本征矢量灵敏度方程用于关于关节和支撑位置的构型变量得出骨骼结构。该推导是通过域方法和边界方法来完成的。为了数值比较的目的,还提出了用于特征值和特征向量灵敏度分析的离散方法。首先,通过悬臂梁进行特征值灵敏度分析,并通过简单支撑梁进行特征向量灵敏度分析,验证所得的灵敏度方程。对于两个示例,都可以轻松获得分析溶液。此外,这些敏感性方程的数值精度和计算效率的研究是通过几个骨架结构的例子进行的。结果表明,域方法具有计算准确和高效的优点。最后,提出了振动梁的设计优化方案,以研究将支撑位置和支撑刚度常数作为设计变量包括在设计中的影响。结论是支撑位置和支撑刚度常数对于提高设计质量至关重要。本论文的第二部分探讨了使用欧拉公式作为形状敏感性分析和优化新型设计的基础的可能性。在几何非线性弹性实体的变形配置中定义性能标准的问题。假定该非线性弹性固体的位移和旋转较大,而其应变则较小。基于欧拉公式以及一般函数的总拉格朗日公式,可以得出形状敏感性方程。对棱柱进行分析分析以验证这些灵敏度方程。然后建立一个设计优化方案,该方案使用欧拉公式进行分析和灵敏度分析,以设计均匀加载的梁的形状,以使受到几何和应力约束的面积最小化。结果表明,所提出的灵敏度方程和设计方案在该示例中效果良好。

著录项

  • 作者

    Chuang, Ching-Hung.;

  • 作者单位

    Old Dominion University.;

  • 授予单位 Old Dominion University.;
  • 学科 Engineering Mechanical.;Engineering Automotive.;Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 古生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号