首页> 外文期刊>Computers & Structures >Incomplete factorization preconditioners for the iterative solution of Stochastic Finite Element equations
【24h】

Incomplete factorization preconditioners for the iterative solution of Stochastic Finite Element equations

机译:随机有限元方程迭代解的不完全分解前置条件

获取原文
获取原文并翻译 | 示例

摘要

This work is focused on enhancing the computational efficiency in Monte Carlo simulation-based Stochastic Finite Element (SFE) analysis of large-scale structural models. Such analyses require the solution of successive systems of equations derived during simulations, which can be efficiently treated using customized versions of the iterative Preconditioned Conjugate Gradient (PCG) solution method. PCG-cus-tomization is localized at the preconditioning matrix employed to accelerate convergence. Thus, specialized preconditioners following the rationale of incomplete factorization are presented, which retain only essential numerical information during factorization. The resulting PCG-based solution schemes allow for computationally efficient SFE analyses with low storage demands in computer memory.
机译:这项工作的重点是提高基于蒙特卡洛模拟的大型结构模型随机有限元(SFE)分析的计算效率。这种分析需要求解在仿真过程中导出的连续方程组,可以使用定制的迭代预条件共轭梯度(PCG)解决方案版本进行有效处理。 PCG客体化位于用于加速收敛的预处理矩阵中。因此,提出了遵循不完全因式分解原理的专用预处理器,该预处理器仅在因式分解期间保留必要的数字信息。最终的基于PCG的解决方案可以在计算机内存中以较低的存储需求实现高效的SFE分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号