首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Application of Diagonally Perturbed Incomplete Factorization Preconditioned Conjugate Gradient Algorithms for Edge Finite-Element Analysis of Helmholtz Equations
【24h】

Application of Diagonally Perturbed Incomplete Factorization Preconditioned Conjugate Gradient Algorithms for Edge Finite-Element Analysis of Helmholtz Equations

机译:对角摄动不完全因式分解共轭梯度算法在亥姆霍兹方程边缘有限元分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

The diagonally perturbed incomplete factorization preconditioning scheme is applied to the conjugate gradient (CG) method for solving a large system of linear equations resulting from the use of edge-based finite-element method (FEM). This scheme contains more global information about the coefficient matrix when compared with banded-matrix schemes. The efficient implementation of this preconditioned CG (PCG) algorithm is described in detail for complex coefficient matrix equation. On several electromagnetic problems the PCG approach converges in CPU time, which is 8.6-19.5 times shorter with respect to the CG approach. By comparison with other preconditioned techniques, the results demonstrate that incomplete factorization preconditioning strategy is especially effective for CG iterative method when edge-FEM is applied to solve large-scale time-harmonic electromagnetic field problems.
机译:将对角扰动的不完全分解预处理方案应用于共轭梯度(CG)方法,以解决由于使用基于边的有限元方法(FEM)而产生的大型线性方程组。与带状矩阵方案相比,此方案包含有关系数矩阵的更多全局信息。针对复杂系数矩阵方程,详细描述了此预处理CG(PCG)算法的有效实现。在一些电磁问题上,PCG方法收敛于CPU时间,相对于CG方法,它缩短了8.6-19.5倍。通过与其他预处理技术的比较,结果表明,当边缘有限元法用于解决大规模时谐电磁场问题时,不完全因子分解预处理策略对于CG迭代方法特别有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号