...
首页> 外文期刊>Computers & Structures >Forward-backward-difference time-integrating schemes with higher order derivatives for non-linear finite element analysis of solids and structures
【24h】

Forward-backward-difference time-integrating schemes with higher order derivatives for non-linear finite element analysis of solids and structures

机译:固体和结构非线性有限元分析的具有高阶导数的前向后向时间积分方案

获取原文
获取原文并翻译 | 示例
           

摘要

One-step multiple-value methods are developed which involve an accurate predictor method with higher derivatives, followed by a corrector method cast in form of an enhanced Newton-Raphson scheme. The generalized Newmark (GNpj) method may be recovered as a special case. The algorithms serve to match the accuracy of the fourth-order Runge-Kutta-Fehlberg method. Challenges to solve more reliably, accurately and efficiently non-linear differential equations are highlighted as stemming from amplitude and phase shift errors introduced by discretization in space and time - a continuous-discrete transformation. The classical stability tool of spectral radius is performed on linear systems whereas Liapunov method on nonlinear systems. (C) 2015 Elsevier Ltd. All rights reserved.
机译:开发了一种单步多值方法,其中包括具有较高导数的精确预测器方法,然后是以增强的Newton-Raphson方案形式转换的校正器方法。通用Newmark(GNpj)方法可以作为特殊情况恢复。该算法用于匹配四阶Runge-Kutta-Fehlberg方法的准确性。由于空间和时间离散化(连续离散变换)引起的幅度和相移误差,突出了解决更可靠,准确和高效的非线性微分方程的挑战。光谱半径的经典稳定性工具是在线性系统上执行的,而Liapunov方法是在非线性系统上执行的。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号