首页> 外文期刊>Computers & Structures >OPTIMAL UNIVERSAL BACKGROUND MODEL IN AUTOMATIC SPEAKER VERIFICATION
【24h】

OPTIMAL UNIVERSAL BACKGROUND MODEL IN AUTOMATIC SPEAKER VERIFICATION

机译:自动扬声器验证中的最佳通用背景模型

获取原文
获取原文并翻译 | 示例

摘要

Automatic Speaker Verification (ASV) is a binary classification task to decide whether a claimed speaker uttered a sentence. This paper proposes two different algorithms for vector quantization (VQ) to speaker verification. Our first algorithm called Sub Vector Quantization (Sub VQ) is based on multiples codebook, represents the target speakers and the universal background model (impostors) and compared it to second vector quantization algorithm used for reducing training data. We compared our algorithms with the baseline system: Gaussian Mixtures Models and Maximum a Posteriori Adaptation. The present study demonstrates that the several codebooks for Universal Background Models give better results and less error rate. The performance of these models is evaluated on the Arabic speaker verification dataset. The VQ SUB method achieved less false acceptance and false reject error for 128 codebook size better than Baseline Vector Quantization approach for 32 codebook size. However, this improvement also depends on the codebook size.
机译:自动说话者验证(ASV)是一种二进制分类任务,用于确定所声明的说话者是否说出了句子。本文针对说话人验证提出了两种不同的矢量量化(VQ)算法。我们的第一个算法称为Sub Vector Quantization(Sub VQ),它基于倍数代码本,代表目标说话者和通用背景模型(冒名顶替者),并将其与用于减少训练数据的第二矢量量化算法进行了比较。我们将算法与基线系统进行了比较:高斯混合模型和最大后验自适应。本研究表明,通用背景模型的几种代码本可提供更好的结果和更少的错误率。这些模型的性能在阿拉伯语使用者验证数据集中进行评估。对于128码本大小的VQ SUB方法,其误接受和误拒绝错误要比对32码本大小的基线矢量量化方法更好。但是,此改进还取决于密码本的大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号