首页> 外文期刊>Computers & Security >A methodology for selecting hardware performance counters for supporting non-intrusive diagnostic of flood DDoS attacks on web servers
【24h】

A methodology for selecting hardware performance counters for supporting non-intrusive diagnostic of flood DDoS attacks on web servers

机译:选择硬件性能计数器的方法,用于支持Web服务器上的洪水DDOS攻击的非侵入式诊断

获取原文
获取原文并翻译 | 示例

摘要

Web server outages caused by a Distributed Denial of Service (DDoS) attacks have increased considerably over the years. Intrusion Detection Systems (IDS) are not sufficient to detect threats in the system, even when used in conjunction with Intrusion Prevention Systems (IPS) and even considering the use of data sets containing information about typical situations and attacks on the system's service. Performing analyzes with a very dense amount of observed variables can cost a significant amount of host resources. Furthermore, these data sets are at risk of not representing the system's behavior properly, and they cannot always be shared as they may contain confidential information in the diagnostic data. This paper presents a non-intrusive diagnostic methodology to select hardware performance counters in HTTP flood DDoS attacks on enterprise-level web servers, combining methods and techniques from different segments. The proposed approach uses low-level resource appliances such as Hardware Performance Counters (HPCs) for diagnosis, creating behavioral profiles in the face of attacks and usual service usage. The proposed strategy supports delivering reliable diagnoses with accurate characterization without third-party data sets. With the proposed methodology, we were able to reduce HPCs by 26%, compared to the initial group.
机译:多年来,由分布式拒绝服务(DDOS)攻击引起的Web服务器中断增加了。即使在与入侵防御系统(IPS)结合使用时,入侵检测系统(IDS)也不足以检测系统中的威胁,甚至考虑使用包含有关系统服务的典型情况和攻击的信息的数据集。使用非常密集的观察变量进行分析可以花费大量的主资源。此外,这些数据集面临不正确地表示系统行为的风险,并且它们不能总是被共享,因为它们可能包含诊断数据中的机密信息。本文提出了一种非侵入式诊断方法,可在企业级Web服务器上选择HTTP泛频DDOS攻击中的硬件性能计数器,将方法和技术与不同段中的组合。该方法采用低级资源设备,如硬件性能计数器(HPC)进行诊断,面对攻击和通常的服务使用情况创建行为配置文件。拟议的策略支持在没有第三方数据集的情况下提供具有准确表征的可靠诊断。通过提出的方法,与初始组相比,我们能够将HPC减少26%。

著录项

  • 来源
    《Computers & Security》 |2021年第11期|102434.1-102434.15|共15页
  • 作者单位

    Centra de Informdtica - Uniuersidade Federal de Pernambuco (UFPE) Av. Prof. Moraes Rego 1235 - Cidade Universitdria Recife - PE 50670-901 Brazil;

    Centra de Informdtica - Uniuersidade Federal de Pernambuco (UFPE) Av. Prof. Moraes Rego 1235 - Cidade Universitdria Recife - PE 50670-901 Brazil;

    Centra de Informdtica - Uniuersidade Federal de Pernambuco (UFPE) Av. Prof. Moraes Rego 1235 - Cidade Universitdria Recife - PE 50670-901 Brazil;

    Centra de Informdtica - Uniuersidade Federal de Pernambuco (UFPE) Av. Prof. Moraes Rego 1235 - Cidade Universitdria Recife - PE 50670-901 Brazil;

    Centra de Informdtica - Uniuersidade Federal de Pernambuco (UFPE) Av. Prof. Moraes Rego 1235 - Cidade Universitdria Recife - PE 50670-901 Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Methodology; Diagnosis; Distributed Denial of Service; Hardware Performance Counters; Infrastructure; Web Server;

    机译:方法;诊断;分布式拒绝服务;硬件性能计数器;基础设施;网络服务器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号