首页> 外文期刊>Computers & Security >Mahalanobis distance-based robust approaches against false data injection attacks on dynamic power state estimation
【24h】

Mahalanobis distance-based robust approaches against false data injection attacks on dynamic power state estimation

机译:Mahalanobis基于距离的距离数据注入攻击动态功率状态估计的距离方法

获取原文
获取原文并翻译 | 示例

摘要

Many researchers have studied false data injection (FDI) attacks in power state estimation, but existing state estimation approaches are still highly vulnerable to FDI attacks. Currently, most existing studies on FDI attacks focus on static state estimation (SSE), where power system states are not changed with time, and one of them includes the discovery of three efficient FDI attacks that can introduce arbitrary large errors into certain state variables without being detected by existing bad measurement detection algorithms. In reality, however, power states are varied with time in real-world power systems. In this paper, we investigate the problem of the above three FDI attacks against dynamic power state estimation (DSE). Although the three attacks were discovered in SSE several years ago, none of them has been well addressed in static power state systems. In this research, we propose two robust defense approaches against the above three efficient FDI attacks on DSE. Compared to existing approaches, our proposed approaches have three major differences and significant strengths: (1) they defend against the three FDI attacks on dynamic power state estimation rather than static power state estimation, (2) they give a robust estimator that can accurately extract a subset of attack-free sensors for power state estimation, and (3) they adopt the little-known Mahalanobis distance in the consistency check of power sensor measurements, which is different from the Euclidean distance used in all the existing studies on power state estimation. We mathematically prove that the Mahalanobis distance is not only useful but also much better than the Euclidean distance in the consistency check of power sensor measurements. Our time complexity analysis shows that the two proposed robust defense approaches are efficient. Moreover, in order to demonstrate the effectiveness of the proposed approaches, we compare them with the three well-known approaches: the least square approach, the Imhotep-SMT approach, and the MEE-UKF approach. Our extensive xperiments show that the proposed approaches further reduce the estimation error by two orders of magnitude and four orders of magnitude compared to the Imhotep-SMT approach and the least square approach, respectively. Moreover, our approach is more stable than the MEE-UKF approach.
机译:许多研究人员研究了功率状态估计中的假数据注射(FDI)攻击,但现有的状态估计方法仍然很容易受到FDI攻击的影响。目前,关于FDI攻击的大多数现有研究侧重于静态估计(SSE),其中电力系统状态不会随着时间的时间而改变,其中一个包括三个有效的FDI攻击,可以在某些状态变量中引入任意的大错误。没有通过现有的不良测量检测算法检测。然而,实际上,电力状态随着现实世界动力系统的时间而变化。在本文中,我们研究了以上三次FDI攻击对动态功率状态估计(DSE)的问题。虽然几年前在SSE中发现了三次攻击,但它们中没有一个都在静态电力状态系统中得到了很好的解决。在这项研究中,我们提出了两种强大的防御方法,以上对DSE上述三种有效的FDI攻击。与现有方法相比,我们的拟议方法具有三种主要差异和重大优势:(1)他们抵御三个FDI攻击动态电力状态估计而不是静态电源状态估计,(2)它们提供了一种能够准确提取的强大估算器用于电源状态估计的无攻击传感器的一个攻击传感器,(3)它们采用了电力传感器测量一致性检查中的鲜为人知的Mahalanobis距离,这与所有现有电力状态估计研究中使用的欧几里德距离不同。我们在数学上证明,Mahalanobis距离不仅是有用的,而且比电力传感器测量的一致性检查中的欧几里德距离好得多。我们的时间复杂性分析表明,两种建议的强大防御方法是有效的。此外,为了证明所提出的方法的有效性,我们将它们与三种着名的方法进行比较:最小的方形方法,IMHOTEP-SMT方法和MEE-UKF方法。我们广泛的Xperiments表明,与IMHOTEP-SMT方法和最小二乘方法相比,所提出的方法进一步减少了两个数量级和四个数量级的估计误差。此外,我们的方法比Mee-UKF方法更稳定。

著录项

  • 来源
    《Computers & Security》 |2021年第9期|102326.1-102326.17|共17页
  • 作者

    Jing Lin; Kaiqi Xiong;

  • 作者单位

    ICNS Lab and Cyber Florida University of South Florida Tampa FL 33620 USA;

    ICNS Lab and Cyber Florida University of South Florida Tampa FL 33620 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cyber-physical systems; Power grids; Kalman filters; State estimation;

    机译:网络物理系统;电网;卡尔曼过滤器;国家估计数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号