首页> 外文期刊>Computers & Security >AutoVAS: An automated vulnerability analysis system with a deep learning approach
【24h】

AutoVAS: An automated vulnerability analysis system with a deep learning approach

机译:Autovas:具有深入学习方法的自动漏洞分析系统

获取原文
获取原文并翻译 | 示例

摘要

Owing to the advances in automated hacking and analysis technologies in recent years, numerous software security vulnerabilities have been announced. Software vulnerabilities are increasing rapidly, whereas methods to analyze and cope with them depend on manual analyses, which result in a slow response. In recent years, studies concerning the prediction of vulnerabilities or the detection of patterns of previous vulnerabilities have been conducted by applying deep learning algorithms in an automated vulnerability search based on source code. However, existing methods target only certain security vulnerabilities or make limited use of source code to compile information. Few studies have been conducted on methods that represent source code as an embedding vector. Thus, this study proposes a deep learning-based automated vulnerability analysis system (AutoVAS) that effectively represents source code as embedding vectors by using datasets from various projects in the National Vulnerability Database (NVD) and Software Assurance Reference Database (SARD). To evaluate AutoVAS, we present and share a dataset for deep learning models. Experimental results show that AutoVAS achieves a false negative rate (FNR) of 3.62%, a false positive rate (FPR) of 1.88%, and an F1-score of 96.11%, which represent lower FNR and FPR values than those achieved by other approaches. We further apply AutoVAS to nine open-source projects and detect eleven vulnerabilities, most of which are missed by the other approaches we experimented with. Notably, we discovered three zero-day vulnerabilities, two of which were patched after being informed by AutoVAS. The other vulnerability received the Common Vulnerabilities and Exposures (CVE) ID after being detected by AutoVAS.
机译:由于近年来自动化黑客和分析技术的进展,已宣布了许多软件安全漏洞。软件漏洞正在迅速增加,而分析和应对的方法依赖于手动分析,从而导致响应缓慢。近年来,已经通过基于源代码在自动漏洞搜索中应用深度学习算法来进行关于预测漏洞或先前漏洞模式的检测的研究。但是,现有方法只针对某些安全漏洞或利用源代码的限制来编译信息。已经对代表源代码的方法进行了很少的研究。因此,本研究提出了基于深度学习的自动漏洞分析系统(Autovas),其有效地代表了通过使用国家漏洞数据库(NVD)和软件保障参考数据库(SARD)中各种项目的数据集来嵌入向量。为了评估Autovas,我们呈现并分享DataSet以获取深度学习模型。实验结果表明,Autovas达到假阴性率(FNR)为3.62%,假阳性率(FPR)为1.88%,F1分数为96.11%,其代表低于其他方法的FNR和FPR值。 。我们进一步将Autovas应用于九个开源项目并检测十一漏洞,其中大部分都被我们尝试的其他方法所遗漏。值得注意的是,我们发现了三个零天漏洞,其中两个是由Autovas通知后修补的。其他漏洞在Autovas检测到后接收了常见的漏洞和暴露(CVE)ID。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号