首页> 外文期刊>Computers & Security >Robust source camera identification against adversarial attacks
【24h】

Robust source camera identification against adversarial attacks

机译:鲁棒源相机识别对抗对抗攻击

获取原文
获取原文并翻译 | 示例

摘要

Application of Deep Neural Networks (DNN) has dramatically improved the performance of Source Camera Identification (SCI), but easily suffers from adversarial attacks. These attacks raise security problems by tampering the identified outcomes with imperceptible noise. To address this issue, we analyze the feature extraction mapping for DNN-based SCI models on manifolds and discover that the vulnerability comes from the oscillation of the mapping. In light of this, we take that the feature extraction mapping should satisfy locally smooth and information monotonicity as a new design principle for robust SCI, and accordingly developed a defensive scheme. The proposed scheme constructs local smooth mapping that guarantees information monotonicity and achieves sufficient statistics by minimizing Kull-back Leibler Divergence (KLD) between the local statistic coordinates on two manifolds. To enhance the usability of our method, we implement it with a Pre-Defense Network (PDN) trained by a two-phase training strategy, which ensures robustness, accuracy, and portability. Experiments on Dresden Image Dataset demonstrate that the proposed defense method offers not only strong robustness for the DNN-based SCI model against adversarial attacks, but also yields comparable or even superior identification performance over existing defense methods. Moreover, PDN also shows defense effect when migrated to other DNN-based SCI models, without extra retraining.
机译:深度神经网络(DNN)的应用大大提高了源相机识别(SCI)的性能,但容易遭受对抗攻击。这些攻击通过篡改具有令人无法察觉的噪声的所识别的结果来提高安全问题。为解决此问题,我们分析了歧管上的基于DNN的SCI模型的特征提取映射,并发现漏洞来自映射的振荡。鉴于此,我们认为特征提取映射应满足当地平滑和信息单调性作为强大的SCI的新设计原则,因此开发了防御方案。所提出的方案构建局部平滑映射,可通过最小化两个歧管的局部统计坐标之间最小化kull返回的leibler发散(KLD)来确保信息单调性并实现足够的统计数据。为了提高我们方法的可用性,我们将其与由两阶段培训策略训练的预防网络(PDN)实施,这确保了鲁棒性,准确性和可移植性。德累斯顿图像数据集的实验表明,拟议的防御方法不仅为对抗对抗攻击的基于DNN的SCI模型提供了强大的鲁棒性,而且还可以对现有的防御方法产生可比甚至卓越的识别性能。此外,当PDN迁移到基于DNN的SCI模型时,PDN还显示防御效果,而无需额外再刷新。

著录项

  • 来源
    《Computers & Security》 |2021年第1期|102079.1-102079.17|共17页
  • 作者单位

    School of Computer Science and Engineering South China University of Technology Guangzhou China;

    School of Computer Science and Engineering South China University of Technology Guangzhou China;

    School of Computer Science and Engineering South China University of Technology Guangzhou China;

    School of Computer Science and Engineering South China University of Technology Guangzhou China;

    School of Computer Science and Engineering South China University of Technology Guangzhou China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Source camera identification; Robustness; Adversarial attacks; Deep neural networks; Smooth mapping; Information monotonicity;

    机译:源相机识别;鲁棒性;对抗攻击;深神经网络;平稳映射;信息单调性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号