首页> 外文期刊>Computers & Security >Byte-level malware classification based on markov images and deep learning
【24h】

Byte-level malware classification based on markov images and deep learning

机译:基于Markov图像和深度学习的字节级恶意软件分类

获取原文
获取原文并翻译 | 示例

摘要

In recent years, malware attacks have become serious security threats and have caused huge losses. Due to the rapid growth of malware variants, how to quickly and accurately classify malware is critical to cyber security. As traditional methods based on machine learning are limited by feature engineering and difficult to process vast amounts of malware quickly, malware classification based on malware images and deep learning has become an effective solution. However, the accuracy rate of existing method based on gray images and deep learning (GDMC) still needs to be improved. Moreover, it is heavily dependent on the amount of training dataset. To improve the accuracy, this paper proposes a byte-level malware classification method based on markov images and deep learning referred to as MDMC. The main step in MDMC is converting malware binaries into markov images according to bytes transfer probability matrixs. Then the deep convolutional neural network is used for markov images classification. The experiments are conducted on two malware datasets, the Microsoft dataset and the Drebin dataset. The average accuracy rates of MDMC are respectively 99.264% and 97.364% on the two datasets. Further experiments on different proportions of training dataset and testing dataset also show that MDMC has better performance than GDMC.
机译:近年来,恶意软件攻击已成为严重的安全威胁,并造成了巨大损失。由于恶意软件变体的快速增长,如何快速准确地对恶意软件进行分类对于网络安全至关重要。由于基于机器学习的传统方法受到功能工程的限制,并且难以快速处理大量恶意软件,因此基于恶意软件图像和深度学习的恶意软件分类已成为一种有效的解决方案。然而,基于灰度图像和深度学习(GDMC)的现有方法的准确率仍然有待提高。此外,它在很大程度上取决于训练数据集的数量。为了提高准确性,本文提出了一种基于马尔可夫图像和深度学习的字节级恶意软件分类方法,称为MDMC。 MDMC的主要步骤是根据字节传输概率矩阵将恶意软件二进制文件转换为Markov图像。然后将深度卷积神经网络用于马尔可夫图像分类。实验是在两个恶意软件数据集(Microsoft数据集和Drebin数据集)上进行的。在两个数据集上,MDMC的平均准确率分别为99.264%和97.364%。在不同比例的训练数据集和测试数据集上进行的进一步实验也表明,MDMC比GDMC具有更好的性能。

著录项

  • 来源
    《Computers & Security》 |2020年第5期|101740.1-101740.12|共12页
  • 作者单位

    College of Computer Science Sichuan University Chengdu 610065 China;

    School of Aeronautics and Astronautics Sichuan University Chengdu 6J0065 China;

    Science and Technology on Reactor System Design Technology Laboratory Nuclear Power Institute of China Chengdu 610065 China;

    Qi anxin technology group co. LTD Beijing 100089 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cyber security; Malware classification; Gray images; Markov images; Deep learning;

    机译:网络安全;恶意软件分类;灰色图像;马尔可夫图像;深度学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号