首页> 外文期刊>Computers & Security >An efficient and scalable privacy preserving algorithm for big data and data streams
【24h】

An efficient and scalable privacy preserving algorithm for big data and data streams

机译:针对大数据和数据流的高效且可扩展的隐私保护算法

获取原文
获取原文并翻译 | 示例

摘要

A vast amount of valuable data is produced and is becoming available for analysis as a result of advancements in smart cyber-physical systems. The data comes from various sources, such as healthcare, smart homes, smart vehicles, and often includes private, potentially sensitive information that needs appropriate sanitization before being released for analysis. The incremental and fast nature of data generation in these systems necessitates scalable privacy-preserving mechanisms with high privacy and utility. However, privacy preservation often comes at the expense of data utility. We propose a new data perturbation algorithm, SEAL (Secure and Efficient data perturbation Algorithm utilizing Local differential privacy), based on Chebyshev interpolation and Laplacian noise, which provides a good balance between privacy and utility with high efficiency and scalability. Empirical comparisons with existing privacy-preserving algorithms show that SEAL excels in execution speed, scalability, accuracy, and attack resistance. SEAL provides flexibility in choosing the best possible privacy parameters, such as the amount of added noise, which can be tailored to the domain and dataset. (C) 2019 Elsevier Ltd. All rights reserved.
机译:随着智能网络物理系统的发展,产生了许多有价值的数据,这些数据可供分析。数据来自各种来源,例如医疗保健,智能家居,智能车辆,并且通常包含私人的,潜在的敏感信息,这些信息在发布进行分析之前需要进行适当的消毒。在这些系统中,数据生成的增量和快速性质要求具有高度隐私和实用性的可扩展隐私保护机制。但是,隐私保护通常以牺牲数据实用性为代价。我们提出了一种新的数据扰动算法SEAL(利用局部差分隐私的安全高效的数据扰动算法),该算法基于Chebyshev插值和Laplacian噪声,在隐私和实用程序之间实现了良好的平衡,具有高效和可扩展性。与现有隐私保护算法的经验比较表明,SEAL在执行速度,可伸缩性,准确性和抗攻击性方面表现出色。 SEAL可以灵活地选择最佳的隐私参数,例如可以根据域和数据集量身定制的增加的噪声量。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号