首页> 外文期刊>Computers & Security >Spartan Networks: Self-feature-squeezing neural networks for increased robustness in adversarial settings
【24h】

Spartan Networks: Self-feature-squeezing neural networks for increased robustness in adversarial settings

机译:Spartan Networks:自我压缩神经网络,在对抗环境中增强了鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

Deep learning models are vulnerable to adversarial examples which are input samples modified in order to maximize the error on the system. We introduce Spartan Networks, resistant deep neural networks that do not require input preprocessing nor adversarial training. These networks have an adversarial layer designed to discard some information of the network, thus forcing the system to focus on relevant input. This is done using a new activation function to discard data. The added layer trains the neural network to filter-out usually-irrelevant parts of its input. Our performance evaluation shows that Spartan Networks have a slightly lower precision but report a higher robustness under attack when compared to unprotected models. Results of this study of Adversarial AI as a new attack vector are based on tests conducted on the MNIST dataset. (C) 2019 Elsevier Ltd. All rights reserved.
机译:深度学习模型容易受到对抗性示例的攻击,这些示例经过修改后的输入样本可以最大程度地提高系统上的错误。我们介绍了Spartan网络,即不需要输入预处理也不需要对抗训练的抗性深度神经网络。这些网络具有对抗层,该对抗层设计为丢弃网络的某些信息,从而迫使系统专注于相关输入。这是通过使用新的激活功能来丢弃数据来完成的。添加的层训练神经网络以过滤掉其输入中通常不相关的部分。我们的性能评估表明,与不受保护的模型相比,Spartan Networks的精度略低,但在遭受攻击时报告的鲁棒性更高。对抗性AI作为新攻击媒介的这项研究的结果基于对MNIST数据集进行的测试。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号