首页> 外文期刊>Computers & Security >Invisible CAPPCHA: A usable mechanism to distinguish between malware and humans on the mobile IoT
【24h】

Invisible CAPPCHA: A usable mechanism to distinguish between malware and humans on the mobile IoT

机译:隐形CAPPCHA:一种用于区分移动物联网上的恶意软件和人类的有用机制

获取原文
获取原文并翻译 | 示例

摘要

Smartphone devices are often assuming the role of edge systems in mobile IoT scenarios and the access to cloud-based services through smartphones, for transmitting multiple sensory data related to human activities, often implying some lawful evidence, has become increasingly common. Thus the need for protecting such transactions from abuses and frauds based on automation techniques is now a critical issue. The most widely adopted method to prevent unauthorized access and abuse of a service by malicious software automation is CAPTCHA. However, trying to strengthen CAPTCHA resilience to automated attacks has led to challenges that, while still being vulnerable, are both difficult and unpleasant for humans. Hence, the strong need for a mechanism that is both secure and usable. In this paper, we present Invisible CAPPCHA, a mechanism that, leveraging trusted sensors embedded in a secure element located on a smartphone is capable of separating humans from computers in a way that is completely transparent to users. Furthermore, as no challenge is required, no additional time is needed and the user cannot fail it by mistake. Compared to the state of the art, our proposal is both secure and more user friendly, lending itself optimally to secure mobile cloud services. (C) 2018 Elsevier Ltd. All rights reserved.
机译:智能手机设备经常承担边缘系统在移动物联网场景中的角色,并通过智能手机访问基于云的服务,以传输与人类活动有关的多种感官数据,这通常暗示了一些合法证据,已变得越来越普遍。因此,基于自动化技术来保护此类交易免受滥用和欺诈的需求现在是一个关键问题。防止恶意软件自动化对服务进行未经授权的访问和滥用的最广泛采用的方法是CAPTCHA。但是,试图增强CAPTCHA对自动攻击的抵御能力导致了挑战,尽管这些挑战仍然很脆弱,但对人类而言既困难又令人不愉快。因此,强烈需要一种既安全又可用的机制。在本文中,我们介绍了Invisible CAPPCHA,该机制利用嵌入在智能手机上的安全元素中的受信任传感器,能够以对用户完全透明的方式将人与计算机分离。此外,由于不需要挑战,因此不需要额外的时间,并且用户不会因错误而失败。与现有技术相比,我们的建议既安全又对用户更友好,从而最适合安全移动云服务。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号