首页> 外文期刊>Computers & Security >AMAL: High-fidelity, behavior-based automated malware analysis and classification
【24h】

AMAL: High-fidelity, behavior-based automated malware analysis and classification

机译:AMAL:基于行为的高保真自动化恶意软件分析和分类

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces AMAL, an automated and behavior-based malware analysis and labeling system that addresses shortcomings of the existing systems. AMAL consists of two sub-systems, AutoMal and MaLabel. AutoMal provides tools to collect low granularity behavioral artifacts that characterize malware usage of the file system, memory, network, and registry, and does that by running malware samples in virtualized environments. On the other hand, MaLabel uses those artifacts to create representative features, use them for building classifiers trained by manually vetted training samples, and use those classifiers to classify malware samples into families similar in behavior. AutoMal also enables un-supervised learning, by implementing multiple clustering algorithms for samples grouping. An evaluation of both AutoMal and MaLabel based on medium-scale (4000 samples) and large-scale datasets (more than 115,000 samples)-collected and analyzed by AutoMal over 13 months-shows AMAL's effectiveness in accurately characterizing, classifying, and grouping malware samples. MaLabel achieves a precision of 99.5% and recall of 99.6% for certain families' classification, and more than 98% of precision and recall for unsupervised clustering. Several benchmarks, cost estimates and measurements highlight the merits of AMAL.
机译:本文介绍了AMAL,这是一种基于行为的自动恶意软件分析和标记系统,它可以解决现有系统的缺点。 AMAL由两个子系统组成:AutoMal和MaLabel。 AutoMal提供了收集低粒度行为工件的工具,这些工件表征了文件系统,内存,网络和注册表的恶意软件使用情况,并通过在虚拟化环境中运行恶意软件样本来做到这一点。另一方面,MaLabel使用这些工件来创建代表性特征,将其用于构建由人工审核的训练样本训练后的分类器,并使用这些分类器将恶意软件样本分类为行为相似的系列。通过为样品分组实施多种聚类算法,AutoMal还可以实现无监督学习。根据AutoMal在13个月内收集和分析的中型(4000个样本)和大型数据集(超过115,000个样本)对AutoMal和MaLabel的评估,显示了AMAL在准确表征,分类和分组恶意软件样本方面的有效性。 。对于某些家庭的分类,MaLabel的准确性和召回率达到99.5%,对于无监督聚类,其准确性和召回率则达到98%以上。几个基准,成本估算和衡量标准都突出了AMAL的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号