首页> 外文期刊>Computers & Security >Intrusion alert prioritisation and attack detection using post-correlation analysis
【24h】

Intrusion alert prioritisation and attack detection using post-correlation analysis

机译:使用后相关分析的入侵警报优先级和攻击检测

获取原文
获取原文并翻译 | 示例

摘要

Event Correlation used to be a widely used technique for interpreting alert logs and discovering network attacks. However, due to the scale and complexity of today's networks and attacks, alert logs produced by these modern networks are much larger in volume and difficult to analyse. In this research we show that adding post-correlation methods can be used alongside correlation to significantly improve the analysis of alert logs. We proposed a new framework titled A Comprehensive System for Analysing Intrusion Alerts (ACSAnIA). The post-correlation methods include a new prioritisation metric based on anomaly detection and a novel approach to clustering events using correlation knowledge. One of the key benefits of the framework is that it significantly reduces false-positive alerts and it adds contextual information to true-positive alerts. We evaluated the post-correlation methods of ACSAnIA using data from a 2012 cyber range experiment carried out by industrial partners of the British Telecom Security Practice Team. In one scenario, our results show that false-positives were successfully reduced by 97% and in another scenario, 16%. It also showed that clustering correlated alerts aided in attack detection. The proposed framework is also being developed and integrated into a pre-existing Visual Analytic tool developed by the British Telecom SATURN Research Team for the analysis of cyber security data.
机译:事件关联曾经是解释警报日志和发现网络攻击的一种广泛使用的技术。但是,由于当今网络和攻击的规模和复杂性,这些现代网络生成的警报日志的数量大得多,并且难以分析。在这项研究中,我们表明,添加后相关方法可以与相关性一起使用,以显着改善警报日志的分析。我们提出了一个新框架,名为“分析入侵警报的综合系统”(ACSAnIA)。后相关方法包括基于异常检测的新优先级度量和使用相关知识对事件进行聚类的新方法。该框架的主要优点之一是,它可以显着减少误报警报,并将上下文信息添加到真正的警钟中。我们使用了由英国电信安全实践团队的工业合作伙伴进行的2012年网络范围实验的数据,评估了ACSAnIA的后相关方法。在一种情况下,我们的结果表明,假阳性成功减少了97%,在另一种情况下,成功减少了16%。它还表明,聚类相关警报有助于攻击检测。拟议的框架也正在开发中,并集成到英国电信SATURN研究小组开发的用于对网络安全数据进行分析的预先存在的Visual Analytic工具中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号