首页> 外文期刊>Computers & Security >Authentication approach using one-time challenge generation based on user behavior patterns captured in transactional data sets
【24h】

Authentication approach using one-time challenge generation based on user behavior patterns captured in transactional data sets

机译:使用基于交易数据集中捕获的用户行为模式的一次性质询生成的身份验证方法

获取原文
获取原文并翻译 | 示例

摘要

Knowledge-based authentication methods have become increasingly popular, where they started as simple passwords, before evolving into static questions for fallback authentication and graphical password-based systems. Question-based authentication methods are typically based on static or slowly changing data sources, thereby making them vulnerable to eavesdropping, wiretapping, and other types of attacks. Thus, an alternative approach is needed to create an authentication challenge that could compete with other authentication factors: hardware tokens and biometrics. In this study, we propose a new authentication approach that exploits the user behavior patterns captured in non-public data sources to create unique, one-time challenges. We propose: (i) a model that is capable of representing user behavior patterns in a wide range of user activities captured from various data sources and (ii) a method for creating unique one-time challenges based on the model. We tested the model and the method based on multiple non-public data sources such as bank transactions, phone logs, computer usage data, and e-mail correspondence. We also demonstrated its efficacy with a live user pool. Security analysis indicated the full resilience of the proposed method against eavesdropping as well as its adaptability in response to guessing attacks by dynamically increasing the complexity of the challenge.
机译:基于知识的身份验证方法已变得越来越流行,从简单的密码开始,然后演变为用于后备身份验证和基于图形密码的系统的静态问题。基于问题的身份验证方法通常基于静态或变化缓慢的数据源,因此使它们容易受到窃听,窃听和其他类型的攻击。因此,需要一种替代方法来创建可以与其他身份验证因素(硬件令牌和生物识别技术)竞争的身份验证挑战。在这项研究中,我们提出了一种新的身份验证方法,该方法利用在非公共数据源中捕获的用户行为模式来创建独特的一次性挑战。我们提出:(i)一个能够代表从各种数据源捕获的广泛用户活动中的用户行为模式的模型,以及(ii)基于该模型创建独特的一次性挑战的方法。我们基于多个非公开数据源(例如银行交易,电话日志,计算机使用数据和电子邮件通信)测试了该模型和方法。我们还通过实时用户群展示了其功效。安全分析表明,通过动态增加挑战的复杂性,所提出的方法具有充分的回弹力,可以防止窃听,并且具有适应性,可以应对猜测的攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号