首页> 外文期刊>Computers & operations research >A kernel search heuristic for a fair facility location problem
【24h】

A kernel search heuristic for a fair facility location problem

机译:一个核心搜索启发式的公平设施位置问题

获取原文
获取原文并翻译 | 示例

摘要

We consider an uncapacitated location problem where p facilities have to be located in order to serve a given set of customers, and we assume that a customer requesting for a service has to reach a facility at his/her own cost. In this setting, a central issue is that of fairness among customers for the accessibility to the services provided. Every choice regarding the location of facilities corresponds to a distance distribution of customers to reach an open facility. Minimizing the average of this distribution would lead to a p-median problem, where system efficiency is optimized but the fair treatment of users is neglected. Minimizing the maximum (worst-case) of the distribution would lead to a p-center problem, where the unfair treatment of users is mitigated but system efficiency is neglected. To compromise between these two extremes, we minimize the conditional beta-mean, i.e., the average distance traveled by the 100 x beta% of customers farther from a facility. We call Fair Facility Location Problem (FFLP(beta)) the resulting optimization problem, which is formulated as a Mixed-Integer linear Program (MIP) with a proven integer-friendly property. We propose a heuristic framework to produce a set of representative solutions to the FFLP(beta). The framework is based on Kernel Search, a heuristic scheme that has been shown to obtain high-quality solutions for a number of MIPs. Computational experiments are reported to validate the quality of the solutions found by the proposed solution algorithm, and to provide some general guidelines regarding the trade-off between average and worst-case optimization. Finally, we report on a case study stemming from the screening activities related to the pandemic triggered by the SARS-CoV-2 virus. The case study regards the optimal location of a number of drive-thru temporary testing sites for collecting swab specimens.
机译:我们考虑一个未加权的位置问题,其中必须定位P设施,以便为一套给定的客户提供服务,我们假设要求服务的客户必须以其成本达到一个设施。在此设置中,核心问题是客户在提供服务的可访问性方面的公平性。关于设施位置的各项选择对应于客户到达开放设施的距离分配。最小化该分布的平均值会导致正值问题,其中系统效率优化,但忽略了用户的公平处理。最小化分配的最大(最差情况)将导致p中心问题,其中减轻用户的不公平处理,但忽略了系统效率。为了在这两个极端之间妥协,我们最小化条件β-平均值,即由100 x Beta%的客户远离设施的客户行驶的平均距离。我们呼叫公平的设施位置问题(FFLP(测试版))产生的优化问题,它被制定为具有经过验证整数的属性的混合整数线性程序(MIP)。我们提出了一个启发式框架,为FFLP(Beta)生成一组代表性解决方案。该框架基于内核搜索,这是一种启发式方案,已被证明为多个MIPS获得高质量解决方案。据报道,计算实验验证所提出的解决方案算法发现的解决方案的质量,并提供了一些关于平均和最差案例优化之间的权衡的一般指导。最后,我们报告了与SARS-COV-2病毒引发的大流行相关的筛选活动的案例研究。案例研究关于收集拭子样本的许多驱动器通过临时测试站点的最佳位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号