首页> 外文期刊>Computers & operations research >Efficient methods for the distance-based critical node detection problem in complex networks
【24h】

Efficient methods for the distance-based critical node detection problem in complex networks

机译:复杂网络中基于距离的关键节点检测问题的高效方法

获取原文
获取原文并翻译 | 示例

摘要

An important problem in network survivability assessment is the identification of critical nodes. The distance-based critical node detection problem addresses the issues of internal cohesiveness and actual distance connectivity overlooked by the traditional critical node detection problem. In this study, we consider the distance-based critical node detection problem which seeks to optimise some distance-based connectivity metric subject to budgetary constraints on the critical node set. We exploit the structure of the problem to derive new path-based integer linear programming formulations that are scalable when compared to an existing compact model. We develop an efficient algorithm for the separation problem that is based on breadth first search tree generation. We also study some valid inequalities to strengthen the formulations and a heuristic to improve primal bounds. We have applied our models and algorithm to two different classes of the problems determined by the distance based connectivity functions. Extensive computational experiments on both real-world and randomly generated network instances, show that the proposed approach is computationally more efficient than the existing compact model especially for larger instances where connections between nodes consist of a small number of hops. Our computational experiments on both classes of distance-based critical node detection problem provide good numerical evidence to support the importance of defining appropriate metrics for specific network applications. (C) 2021 Elsevier Ltd. All rights reserved.
机译:网络生存能力评估中的一个重要问题是识别临界节点。基于距离的关键节点检测问题解决了传统的关键节点检测问题所忽视的内部凝聚力和实际距离连接问题。在这项研究中,我们考虑基于距离的关键节点检测问题,其寻求优化对关键节点集的预算约束的一些基于距离的连接度量。我们利用问题的结构来派生与现有紧凑型号相比的新的基于路径的整数线性编程配方。我们为基于广度第一搜索树生成的分离问题开发了一种高效的算法。我们还研究了一些有效的不平等,以加强制定和启发式改善原始界限。我们已将模型和算法应用于由基于距离的连接功能确定的两个不同类别的问题。对现实世界和随机生成的网络实例的广泛计算实验,表明所提出的方法比现有的紧凑型模型更效率,特别是对于节点之间的连接组成的较大数量的跳跃。我们对两类基于距离的关键节点检测问题的计算实验提供了良好的数值证据,以支持定义特定网络应用程序的适当度量的重要性。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号