首页> 外文期刊>Computers & operations research >Energy aware scheduling in flexible flow shops with hybrid particle swarm optimization
【24h】

Energy aware scheduling in flexible flow shops with hybrid particle swarm optimization

机译:具有混合粒子群优化的灵活流量商店中的能量意识到调度

获取原文
获取原文并翻译 | 示例

摘要

This paper integrates energy awareness in the flexible flow shop scheduling system, where two objectives are minimized simultaneously: total tardiness and electric power costs. We also consider practical settings including variable processing speeds and time-of-use (TOU) electricity prices. A novel hybrid particle swarm optimization (HPSO) algorithm is developed which incorporates several distinguishing features: Particles are represented based on job operation and machine assignment, which are updated directly in the discrete domain. More importantly, we introduce a multi-objective tabu search procedure and a position based crossover operator to balance global exploration and local exploitation. Experiments are conducted to verify the performance of the proposed HPSO algorithm compared to the well-known approaches in the literature. Results show the significance of HPSO in terms of the number and quality of non-dominated solutions and computational efficiency. (C) 2020 Elsevier Ltd. All rights reserved.
机译:本文将能源意识集成在柔性流量店调度系统中,其中两个目标同时最小化:总迟到和电力成本。我们还考虑实际设置,包括可变处理速度和使用时间(TOU)电价。开发了一种新颖的混合粒子群优化(HPSO)算法,其结合了几个区分特征:粒子基于作业操作和机器分配来表示,其直接在离散域中更新。更重要的是,我们介绍了一个多目标禁忌搜索程序和基于位置的交叉运算符,以平衡全球探索和本地开发。进行实验以验证所提出的HPSO算法的性能与文献中的众所周知的众所周知的方法相比。结果在非主导解决方案的数量和质量方面表明了HPSO的重要性。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号