首页> 外文期刊>Computers & operations research >Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management
【24h】

Predicting solutions of large-scale optimization problems via machine learning: A case study in blood supply chain management

机译:通过机器学习预测大规模优化问题的解决方案 - 以血供链管理为例

获取原文
获取原文并翻译 | 示例
       

摘要

Practical constrained optimization models are often large, and solving them in a reasonable time is a challenge in many applications. Further, many industries have limited access to professional commercial optimization solvers or computational power for use in their day-to-day operational decisions. In this paper, we propose a novel approach to deal with the issue of solving large operational stochastic optimization problems (SOPs) by using machine learning models. We assume that decision makers have access to facilities to optimally solve their large-scale optimization model for some initial and limited period and for some test instances. This might be through a collaborative project with research institutes or through short-term use of high-performance computing facilities. We propose that longer term support can be provided by utilizing the solutions (i.e., the optimal value of the actionable decision variables) of the stochastic optimization model from this initial period to train a machine learning model to learn optimal operational decisions in the future. In this study, the proposed approach is employed to make decisions on transshipment of blood units in a network of hospitals. We compare the decisions learned by several machine learning models with the optimal results obtained if the hospitals had access to commercial optimization solvers and computational power, and with the hospital network's current empirical heuristic policy. The results show that using a trained neural network model reduces the average daily cost by about 29% compared with current policy, while the exact optimal policy reduces the average daily cost by 37%. Although optimization models cannot be fully replaced by machine learning, our proposed approach while not guaranteed to be optimal can improve operational decisions when optimization models are computationally expensive and infeasible for daily operational decisions in organizations such as not-for-profit and small and medium-sized enterprises. (C) 2020 Elsevier Ltd. All rights reserved.
机译:实际约束优化模型通常很大,并在合理的时间内解决它们是许多应用中的挑战。此外,许多行业的使用有限地访问了专业的商业优化求解器或计算能力,供日常运行决策。在本文中,我们提出了一种通过使用机器学习模型解决大型操作随机优化问题(SOP)的问题。我们假设决策者可以访问设施,以最佳地解决一些初始和有限的时间和一些测试实例的大规模优化模型。这可能是通过与研究机构的协作项目或通过短期使用高性能计算设施的协作项目。我们建议通过利用随机优化模型的解决方案(即,可操作决策变量的最佳值)从该初始时期培训机器学习模型来学习未来最佳运行决策的较长术语支持。在这项研究中,拟议的方法受雇于在医院网络中进行血液单位的转运决策。我们比较多种机器学习模型学习的决定,如果医院可以访问商业优化求解器和计算能力,并且与医院网络当前的经验启发式政策有所了解,则获得最佳结果。结果表明,与目前的政策相比,使用培训的神经网络模型将平均每日成本降低约29%,而确切的最佳政策将平均每日成本降低37%。尽管优化模型不能被机器学习完全取代,但我们的提出方法虽然不能保证最佳,但是当优化模型在计算昂贵和不可行的组织中的日常运行决策时可以改善运行决策,例如非营利性和中小的组织中的日常运行决策大小企业。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号