首页> 外文期刊>Computers & operations research >Representations of quadratic combinatorial optimization problems: A case study using quadratic set covering and quadratic knapsack problems
【24h】

Representations of quadratic combinatorial optimization problems: A case study using quadratic set covering and quadratic knapsack problems

机译:二次组合优化问题的表示:一个使用二次集覆盖和二次背包问题的案例研究

获取原文
获取原文并翻译 | 示例

摘要

The objective function of a quadratic combinatorial optimization problem (QCOP) can be represented using two data items, a quadratic cost matrix Q and a linear cost vector c. Different, but equivalent, representations of the pair (Q, c) for the same QCOP are well known in literature. These representations however have inherently different properties. Popular general purpose 0-1 integer programming solvers such as GUROBI and CPLEX do not suggest a preferred representation of Q and c. Our experimental analysis discloses that GUROBI prefers the upper triangular representation of the matrix Q whereas CPLEX prefers the symmetric representation, in a statistically significant manner, for the quadratic set covering problem (QSCP) and the quadratic unconstrained binary optimization problem. However, the same behavior was not observed in the case of the quadratic knapsack problem. This shows that the structure of feasible solutions are also important in choosing a preferred equivalent representation, if any. Equivalent representations, although preserve optimality, they could alter the corresponding lower bound values obtained by various lower bounding schemes. For the Gilmore-Lawler type lower bound of a QSCP, the symmetric representation of Q produced tighter bounds, in general. Effects of equivalent representations when CPLEX and GUROBI are run in a heuristic mode, are also explored. Further, we review various equivalent representations of a QCOP from the literature that have theoretical basis to be viewed as 'strong'. We also provide new theoretical insights on generating 'strong' equivalent representations by making use of the constant value property of a linear objective function and diagonalization (linearization) of a quadratic cost matrix. (C) 2019 Elsevier Ltd. All rights reserved.
机译:二次组合优化问题(QCOP)的目标函数可以使用两个数据项表示:二次成本矩阵Q和线性成本向量c。相同QCOP的对(Q,c)的不同表示但等效表示在文献中是众所周知的。但是,这些表示具有本质上不同的属性。流行的通用0-1整数规划求解器(例如GUROBI和CPLEX)没有建议Q和c的首选表示形式。我们的实验分析表明,对于二次集覆盖问题(QSCP)和二次无约束二进制优化问题,GUROBI更喜欢矩阵Q的上三角表示,而CPLEX更喜欢以对称的统计学表示。但是,在二次背包问题中未观察到相同的行为。这表明可行的解决方案的结构在选择首选等效表示形式(如果有)时也很重要。等效表示虽然保留了最佳性,但它们可以更改通过各种下限方案获得的相应下限值。通常,对于QSCP的Gilmore-Lawler型下界,Q的对称表示产生更严格的界限。还探讨了当CPLEX和GUROBI以启发式模式运行时等效表示的效果。此外,我们从文献中回顾了QCOP的各种等效表示形式,这些表示形式具有理论基础,被视为“强大”。我们还通过利用线性目标函数的恒定值属性和二次成本矩阵的对角化(线性化),为生成“强”等价表示提供了新的理论见解。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号