首页> 外文期刊>Computers & operations research >Exact algorithms for unconstrained three-dimensional cutting problems: a comparative study
【24h】

Exact algorithms for unconstrained three-dimensional cutting problems: a comparative study

机译:不受约束的三维切割问题的精确算法:比较研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose two exact algorithms for solving the three-dimensional cutting (3DC) problem. We study the two cases of the unconstrained 3DC problem: (i) only one large pallet is considered, denoted U_3DC, and (ii) the general version, denoted U_G3DC, in which different large pallets are considered. For both cases of the problem, we consider that there is unlimited quantity of each type of pieces to cut, and that all cuts are of guillotine type. We propose a first exact algorithm for the U_3DC problem. The algorithm is an adaptation of Gilmore and Gomory's approach (Oper. Res. 14 (1966) 1045) initially proposed for solving the unconstrained two-dimensional guillotine cutting problem. We then present a second algorithm for the same problem. This algorithm is mainly based upon a graph search procedure using a depth-first search strategy. This algorithm is a straightforward extension of the two-dimensional guillotine cutting approach proposed in (Eur. J. Oper. Res. 91 (1996) 553). We later show how we can extend the dynamic programming based algorithm for exactly solving the U_G3DC problem. Finally, we undertake an extensive experimental study with a large number of problem instances extracted from the literature and compare the performances of both algorithms. Scope and purpose In many industrial sectors, minimizing wastage is a critical issue. Thus, maximizing material utilization for cutting industries including paper, wood, glass, and metal is a relevant performance measure. This paper studies the unconstrained three-dimensional guillotine cutting problem, and proposes two exact algorithms to solve it. The unconstrained three-dimensional guillotine cutting problem, considered herein, consists of cutting objects of various sizes from large pallets of fixed dimensions. The objects, called pieces, are small rectangular parallelepipeds while the pallets are stock rectangular parallelepipeds. The demand for each type of objects is unlimited. In this paper we first propose two exact algorithms for solving the particular case where only one available large pallet is considered. Next, we show how we can extend the dynamic programming based algorithm for exactly solving the problem with different large pallets.
机译:在本文中,我们提出了两种精确的算法来解决三维切割(3DC)问题。我们研究了无约束3DC问题的两种情况:(i)仅考虑一个大托盘,表示为U_3DC;(ii)通用版本,表示为U_G3DC,其中考虑了不同的大托盘。对于这两种情况,我们认为每种类型的切块数量都是无限的,并且所有切块都是断头台类型的。我们针对U_3DC问题提出了第一个精确算法。该算法是Gilmore和Gomory的方法(Oper。Res。14(1966)1045)最初提出的用于解决无约束二维断头台切割问题的方法的改编。然后,我们针对相同的问题提出第二种算法。该算法主要基于使用深度优先搜索策略的图搜索过程。该算法是(Eur。J. Oper。Res。91(1996)553)中提出的二维断头台切割方法的直接扩展。稍后我们将展示如何扩展基于动态编程的算法以精确解决U_G3DC问题。最后,我们进行了广泛的实验研究,从文献中提取了大量问题实例,并比较了两种算法的性能。范围和目的在许多工业领域,最大限度地减少浪费是一个关键问题。因此,使包括纸张,木材,玻璃和金属在内的切割行业的材料利用率最大化是一项重要的性能指标。本文研究了无约束的三维断头台切割问题,并提出了两种精确的算法来解决。这里考虑的无约束的三维断头台切割问题包括从固定尺寸的大托盘切割各种尺寸的物体。被称为零件的物体是小的长方体,而货盘则是库存的长方体。对每种类型的对象的需求都是无限的。在本文中,我们首先提出两种精确的算法来解决只考虑一个可用大托盘的特殊情况。接下来,我们展示如何扩展基于动态规划的算法,以准确解决不同大型托盘的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号