首页> 外文期刊>Computers & operations research >New metaheuristic approaches for the edge-weighted k-cardinality tree problem
【24h】

New metaheuristic approaches for the edge-weighted k-cardinality tree problem

机译:边缘加权k基数树问题的新元启发式方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose three metaheuristic approaches, namely a Tabu Search, an Evolutionary Computation and an Ant Colony Optimization approach, for the edge-weighted k-cardinality tree (KCT) problem. This problem is an NP-hard combinatorial optimization problem that generalizes the well-known minimum weight spanning tree problem. Given an edge-weighted graph G = (V,E), it consists of finding a tree in G with exactly k ≤ |V| -1 edges, such that the sum of the weights is minimal. First, we show that our new metaheuristic approaches are competitive by applying them to a set of existing benchmark instances and comparing the results to two different Tabu Search methods from the literature. The results show that these benchmark instances are not challenging enough for our metaheuristics. Therefore, we propose a diverse set of benchmark instances that are characterized by different features such as density and variance in vertex degree. We show that the performance of our metaheuristics depends on the characteristics of the tackled instance, as well as on the cardinality. For example, for low cardinalities the Ant Colony Optimization approach is best, whereas for high cardinalities the Tabu Search approach has advantages.
机译:在本文中,我们针对边缘加权k基数树(KCT)问题提出了三种禁忌启发式方法,即禁忌搜索,进化计算和蚁群优化方法。此问题是NP-hard组合优化问题,它推广了众所周知的最小权重生成树问题。给定一个边缘加权图G =(V,E),它包括在G中找到一个树,恰好有k≤| V |。 -1个边,因此权重之和最小。首先,我们通过将新的启发式方法应用于一组现有的基准实例并将结果与​​文献中的两种不同的禁忌搜索方法进行比较,证明了它们具有竞争力。结果表明,这些基准实例对我们的元启发法还没有足够的挑战。因此,我们提出了一组具有不同特征(例如密度和顶点度方差)的基准实例。我们表明,我们的元启发式方法的性能取决于所解决实例的特征以及基数。例如,对于低基数,蚁群优化方法是最好的,而对于高基数,禁忌搜索法则具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号