首页> 美国卫生研究院文献>Springer Open Choice >Metaheuristic approaches in biopharmaceutical process development data analysis
【2h】

Metaheuristic approaches in biopharmaceutical process development data analysis

机译:生物制药过程开发数据分析中的元启发式方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is a growing interest in mining and handling of big data, which has been rapidly accumulating in the repositories of bioprocess industries. Biopharmaceutical industries are no exception; the implementation of advanced process control strategies based on multivariate monitoring techniques in biopharmaceutical production gave rise to the generation of large amounts of data. Real-time measurements of critical quality and performance attributes collected during production can be highly useful to understand and model biopharmaceutical processes. Data mining can facilitate the extraction of meaningful relationships pertaining to these bioprocesses, and predict the performance of future cultures. This review evaluates the suitability of various metaheuristic methods available for data pre-processing, which would involve the handling of missing data, the visualisation of the data, and dimension reduction; and for data processing, which would focus on modelling of the data and the optimisation of these models in the context of biopharmaceutical process development. The advantages and the associated challenges of employing different methodologies in pre-processing and processing of the data are discussed. In light of these evaluations, a summary guideline is proposed for handling and analysis of the data generated in biopharmaceutical process development.
机译:对大数据的挖掘和处理的兴趣与日俱增,这种兴趣已在生物加工工业的存储库中迅速积累。生物制药行业也不例外。在生物制药生产中基于多变量监控技术的先进过程控制策略的实施产生了大量数据。生产过程中收集的关键质量和性能属性的实时测量对于理解和建模生物制药过程非常有用。数据挖掘可以促进与这些生物过程有关的有意义关系的提取,并预测未来文化的表现。这篇综述评估了可用于数据预处理的各种元启发式方法的适用性,这些方法将涉及丢失数据的处理,数据的可视化和降维;对于数据处理,将重点放在生物制药过程开发中的数据建模和这些模型的优化上。讨论了在数据的预处理和处理中采用不同方法的优点和相关挑战。根据这些评估,提出了用于处理和分析生物制药工艺开发中生成的数据的汇总指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号