首页> 外文期刊>Computers & operations research >Active guided evolution strategies for large-scale vehicle routing problems with time windows
【24h】

Active guided evolution strategies for large-scale vehicle routing problems with time windows

机译:具有时间窗的大规模车辆路径问题的主动制导进化策略

获取原文
获取原文并翻译 | 示例

摘要

We present a new and effective metaheuristic algorithm, active guided evolution strategies, for the vehicle routing problem with time windows. The algorithm combines the strengths of the well-known guided local search and evolution strategies metaheuristics into an iterative two-stage procedure. More precisely, guided local search is used to regulate a composite local search in the first stage and the neighborhood of the evolution strategies algorithm in the second stage. The vehicle routing problem with time windows is a classical problem in operations research, where the objective is to design least cost routes for a fleet of identical capacitated vehicles to service geographically scattered customers within pre-specified time windows. The presented algorithm is specifically designed for large-scale problems. The computational experiments were carried out on an extended set of 302 benchmark problems. The results demonstrate that the suggested method is highly competitive, providing the best-known solutions to 86% of all test instances within reasonable computing times. The power of the algorithm is confirmed by the results obtained on 23 capacitated vehicle routing problems from the literature.
机译:针对具有时间窗的车辆路径问题,我们提出了一种新的有效的元启发式算法,即主动制导进化策略。该算法将著名的局部搜索和进化策略元启发式算法的优势组合成一个迭代的两阶段过程。更精确地,在第一阶段中使用引导的局部搜索来调节复合局部搜索,而在第二阶段中则使用进化局部算法来调节进化策略算法的邻域。具有时间窗的车辆路径问题是运筹学中的一个经典问题,其目的是为一组容量相同的车辆设计成本最低的路线,以在预定的时间窗内为地理位置分散的客户提供服务。提出的算法是专门针对大规模问题而设计的。在扩展的302个基准问题上进行了计算实验。结果表明,该方法具有很高的竞争力,可以在合理的计算时间内为86%的所有测试实例提供最著名的解决方案。该算法的强大能力由文献中23个容量受限的车辆路径问题获得的结果证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号