首页> 外文期刊>Computers & operations research >An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers
【24h】

An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers

机译:一种有效的基于PSO的混合算法,用于有限缓冲区的流水车间调度

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an effective hybrid algorithm based on particle swarm optimization (HPSO) is proposed for permutation flow shop scheduling problem (PFSSP) with the limited buffers between consecutive machines to minimize the maximum completion time (i.e., makespan). First, a novel encoding scheme based on random key representation is developed, which converts the continuous position values of particles in PSO to job permutations. Second, an efficient population initialization based on the famous Nawaz-Enscore-Ham (NEH) heuristic is proposed to generate an initial population with certain quality and diversity. Third, a local search strategy based on the generalization of the block elimination properties, named block-based local search, is probabilistically applied to some good particles. Moreover, simulated annealing (SA) with multi-neighborhood guided by an adaptive meta-Lamarckian learning strategy is designed to prevent the premature convergence and concentrate computing effort on promising solutions. Simulation results and comparisons demonstrate the effectiveness of the proposed HPSO. Furthermore, the effects of some parameters are discussed.
机译:本文提出了一种基于粒子群优化(HPSO)的有效混合算法,用于在连续机器之间具有有限缓冲区的置换流水车间调度问题(PFSSP),以最大程度地减少最大完成时间(即制造期)。首先,开发了一种基于随机密钥表示的新颖编码方案,该方案将PSO中粒子的连续位置值转换为作业排列。其次,提出了基于著名的Nawaz-Enscore-Ham(NEH)启发式算法的有效种群初始化,以生成具有一定质量和多样性的初始种群。第三,基于块消除特性的泛化的局部搜索策略(称为基于块的局部搜索)被概率性地应用于一些好的粒子。此外,在自适应元Lamarckian学习策略的指导下,采用多邻域模拟退火(SA)旨在防止过早收敛并将计算工作集中在有希望的解决方案上。仿真结果和比较证明了所提出的HPSO的有效性。此外,讨论了一些参数的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号