首页> 外文期刊>Computers & operations research >An Effective Hybrid De-based Algorithm For Multi-objective Flow Shop Scheduling With Limited Buffers
【24h】

An Effective Hybrid De-based Algorithm For Multi-objective Flow Shop Scheduling With Limited Buffers

机译:有限缓冲区的多目标流水车间调度的一种有效的混合De-based算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an effective hybrid algorithm based on differential evolution (DE), namely HDE, to solve multi-objective permutation flow shop scheduling problem (MPFSSP) with limited buffers between consecutive machines, which is a typical NP-hard combinatorial optimization problem with strong engineering background. Firstly, to make DE suitable for solving scheduling problems, a largest-order-value (LOV) rule is presented to convert the continuous values of individuals in DE to job permutations. Secondly, after the DE-based exploration, an efficient local search, which is designed based on the landscape of MPFSSP with limited buffers, is applied to emphasize exploitation. Thus, not only does the HDE apply the parallel evolution mechanism of DE to perform effective exploration (global search) in the whole solution space, but it also adopts problem-dependent local search to perform thorough exploitation (local search) in the promising sub-regions. In addition, the concept of Pareto dominance is used to handle the updating of solutions in sense of multi-objective optimization. Moreover, the convergence property of HDE is analyzed by using the theory of finite Markov chain. Finally, simulations and comparisons based on benchmarks demonstrate the effectiveness and efficiency of the proposed HDE.
机译:提出了一种有效的基于差分进化(DE)的混合算法,即HDE,以解决连续机器之间缓冲区有限的多目标置换流水车间调度问题(MPFSSP),这是一个典型的NP-hard组合优化问题,具有很强的鲁棒性。工程背景。首先,为了使DE适用于解决调度问题,提出了一种最大序值(LOV)规则,将DE中个体的连续值转换为工作置换。其次,在基于DE的探索之后,基于具有有限缓冲区的MPFSSP的景观设计的有效局部搜索被用于强调开发。因此,HDE不仅应用DE的并行演化机制在整个解决方案空间中进行有效的探索(全局搜索),而且还采用与问题相关的局部搜索在有希望的子区域中进行全面的探索(局部搜索)地区。此外,帕累托优势的概念用于处理多目标优化意义上的解决方案更新。此外,利用有限马尔可夫链理论分析了HDE的收敛性。最后,基于基准的仿真和比较证明了所提出的HDE的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号