首页> 外文期刊>Computers & operations research >Solving the variable size bin packing problem with discretized formulations
【24h】

Solving the variable size bin packing problem with discretized formulations

机译:用离散配方解决可变尺寸垃圾箱包装问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper we study the use of a discretized formulation for solving the variable size bin packing problem (VSBPP). The VSBPP is a generalization of the bin packing problem where bins of different capacities (and different costs) are available for packing a set of items. The objective is to pack all the items minimizing the total cost associated with the bins. We start by presenting a straightforward integer programming formulation to the problem and later on, propose a less straightforward formulation obtained by using a so-called discretized model reformulation technique proposed for other problems (see [Gouveia L. A 2n constraint formulation for the capacitated minimal spanning tree problem. Operations Research 1995; 43:130-141; Gouveia L, Saldanha-da-Gama F. On the capacitated concentrator location problem: a reformulation by discretization. Computers and Operations Research 2006; 33:1242-1258]). New valid inequalities suggested by the variables of the discretized model are also proposed to strengthen the original linear relaxation bounds. Computational results (see Section 4) with up to 1000 items show that these valid inequalities not only enhance the linear programming relaxation bound but may also be extremely helpful when using a commercial package for solving optimally VSBPP.
机译:在本文中,我们研究了离散化公式在解决可变尺寸垃圾箱包装问题(VSBPP)中的用途。 VSBPP是垃圾箱包装问题的概括,其中可以使用不同容量(和不同成本)的垃圾箱来包装一组物品。目的是包装所有物品,以最大程度减少与垃圾箱相关的总成本。我们首先提出一个简单的整数规划公式来解决问题,然后提出一个不太直接的公式,该公式通过使用针对其他问题而提出的所谓离散化模型重新制定技术而获得(请参阅[Gouveia L.关于容量最小的2n约束公式。生成树问题》,Operations Research 1995; 43:130-141; Gouveia L,Saldanha-da-Gama F.关于有能力的选矿厂位置问题:通过离散化的重新公式化;《计算机与运筹学》,2006; 33:1242-1258]。离散模型变量提出的新的有效不等式也被提出来加强原始的线性弛豫边界。具有多达1000个项目的计算结果(请参阅第4节)表明,这些有效的不等式不仅增强了线性规划的松弛范围,而且在使用商业软件包来求解最佳VSBPP时也可能非常有帮助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号