首页> 外文期刊>Computers & operations research >Kernel based support vector machine via semidefinite programming: Application to medical diagnosis
【24h】

Kernel based support vector machine via semidefinite programming: Application to medical diagnosis

机译:基于半确定性编程的基于内核的支持向量机:在医学诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Support vector machine (SVM) is a well sound learning method and a robust classification procedure. Choosing a suitable kernel function in SVM is crucial for obtaining good performance; the difficulty is how to choose a suitable data transformation for the given problem. To this end, multiple kernel matrices, each of them corresponding to a given similarity measure, can be linearly combined. In this paper, the optimal kernel matrix, obtained as linear combination of known kernel matrices, is generated using a semidefinite programming approach. A suitable model formulation assures that the obtained kernel matrix is positive semidefinite and is optimal with respect to the dataset under consideration. The proposed approach has been applied to some very important medical diagnostic decision making problems and the results obtained by carrying out preliminary numerical experiments demonstrated the effectiveness of the proposed solution approach.
机译:支持向量机(SVM)是一种完善的学习方法和强大的分类程序。在SVM中选择合适的内核功能对于获得良好的性能至关重要。困难在于如何针对给定的问题选择合适的数据转换。为此,可以线性地组合多个核矩阵,每个核矩阵对应于给定的相似性度量。在本文中,使用半确定编程方法生成了作为已知内核矩阵的线性组合而获得的最优内核矩阵。合适的模型公式可确保获得的核矩阵是正半定的,并且相对于所考虑的数据集而言是最优的。所提出的方法已经应用于一些非常重要的医学诊断决策问题,并且通过进行初步数值实验获得的结果证明了所提出的解决方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号