首页> 外文期刊>Computers & operations research >A genetic algorithm based heuristic for scheduling of virtual manufacturing cells (VMCs)
【24h】

A genetic algorithm based heuristic for scheduling of virtual manufacturing cells (VMCs)

机译:基于遗传算法的虚拟制造单元(VMC)调度启发式算法

获取原文
获取原文并翻译 | 示例

摘要

We present a genetic algorithm (GA) based heuristic approach for job scheduling in virtual manufacturing cells (VMCs). In a VMC, machines are dedicated to a part as in a regular cell, but machines are not physically relocated in a contiguous area. Cell configurations are therefore temporary, and assignments are made to optimize the scheduling objective under changing demand conditions. We consider the case where there are multiple jobs with different processing routes. There are multiple machine types with several identical machines in each type and are located in different locations in the shop floor. Scheduling objective is weighted makespan and total traveling distance minimization. The scheduling decisions are the (i) assignment of jobs to the machines, and (ii) the job start time at each machine. To evaluate the effectiveness of the GA heuristic we compare it with a mixed integer programming (MIP) solution. This is done on a wide range of benchmark problem. Computational results show that GA is promising in finding good solutions in very shorter times and can be substituted in the place of MIP model.
机译:我们提出了一种基于遗传算法(GA)的启发式方法,用于虚拟制造单元(VMC)中的作业调度。在VMC中,机器专用于零件,就像在常规单元中一样,但是机器并没有物理上重新放置在连续区域中。因此,单元配置是临时的,在不断变化的需求条件下进行分配以优化计划目标。我们考虑有多个作业具有不同处理路径的情况。有多种机器类型,每种类型都有数台相同的机器,并且位于车间的不同位置。调度目标是加权制造期和总行驶距离最小化。调度决策是(i)将作业分配给机器,以及(ii)每台机器上的作业开始时间。为了评估GA启发式算法的有效性,我们将其与混合整数规划(MIP)解决方案进行了比较。这是在广泛的基准问题上完成的。计算结果表明,遗传算法有望在很短的时间内找到好的解决方案,并且可以代替MIP模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号