首页> 外文期刊>Computers & operations research >DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems
【24h】

DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems

机译:DEMORS:使用差分进化和粗糙集理论求解约束问题的混合多目标优化算法

获取原文
获取原文并翻译 | 示例

摘要

The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a moderate computational cost. This paper extends a previously published MOEA (Hernandez-Diaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO'2006). Seattle, Washington. USA: ACM Press: July 2006], which was limited to unconstrained multi-objective optimization problems. Here, the main idea is to use this sort of hybrid approach to approximate the Pareto front of a constrained multi-objective optimization problem while performing a relatively low number of fitness function evaluations. Since in real-world problems the cost of evaluating the objective functions is the most significant, our underlying assumption is that, by aiming to minimize the number of such evaluations, our MOEA can be considered efficient. As in its previous version, our hybrid approach operates in two stages: in the first one, a multi-objective version of differential evolution is used to generate an initial approximation of the Pareto front. Then, in the second stage, rough set theory is used to improve the spread and quality of this initial approximation. To assess the performance of our proposed approach, we adopt, on the one hand, a set of standard bi-objective constrained test problems and, on the other hand, a large real-world problem with eight objective functions and 160 decision variables. The first set of problems are solved performing 10,000 fitness function evaluations, which is a competitive value compared to the number of evaluations previously reported in the specialized literature for such problems. The real-world problem is solved performing 250,000 fitness function evaluations, mainly because of its high dimensionality. Our results are compared with respect to those generated by NSGA-II, which is a MOEA representative of the state-of-the-art in the area.
机译:本文的目的是说明如何将多目标进化算法(MOEA)与基于粗糙集理论的局部搜索方法混合使用,以获得可行的替代方案,从而获得能够解决困难的受限多目标算法。客观的优化问题,而计算量却适中。本文扩展了先前发表的MOEA(Hernandez-Diaz AG,Santana-Quintero LV,Coello Coello C,Caballero R,Molina J.使用差分进化和粗糙集理论进行多目标优化的新建议。发表于:2006遗传与进化计算会议(GECCO'2006)。美国华盛顿州西雅图:ACM出版社:2006年7月],该会议仅限于无约束的多目标优化问题,此处的主要思想是使用这种混合方法来近似Pareto前沿约束条件的多目标优化问题,同时执行相对较少的适应度函数评估由于在现实世界中,评估目标函数的成本是最重要的,因此我们的基本假设是,通过最大程度地减少目标函数的数量与以前的版本一样,我们的混合方法分两个阶段运行:在第一个阶段,差分的多目标版本演化用于生成帕累托前沿的初始近似值。然后,在第二阶段,使用粗糙集理论来改善这种初始近似的扩展和质量。为了评估我们提出的方法的性能,我们一方面采用了一组标准的双目标约束测试问题,另一方面采用了具有8个目标函数和160个决策变量的大型实际问题。解决了第一组问题,执行了10,000个适应度函数评估,与以前在专业文献中针对此类问题报告的评估数量相比,这是一个竞争价值。现实世界中的问题通过执行250,000个适应度函数评估得以解决,这主要是因为其维度高。我们的结果与NSGA-II产生的结果进行了比较,后者是该地区最先进的MOEA代表。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号