首页> 外文期刊>Computers & operations research >Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution
【24h】

Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution

机译:通过协同协同进化在并行多目标进化算法中实现超线性性能

获取原文
获取原文并翻译 | 示例

摘要

This article introduces three new multi-objective cooperative revolutionary variants of three state-of-the-art multi-objective evolutionary algorithms, namely, Non-dominated Sorting Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Multi-objective Cellular Genetic Algorithm (MOCell). In such a coevolutionary architecture, the population is split into several sub-populations or islands, each of them being in charge of optimizing a subset of the global solution by using the original multi-objective algorithm. Evaluation of complete solutions is achieved through cooperation, i.e., all subpopulations share a subset of their current partial solutions. Our purpose is to study how the performance of the cooperative coevolutionary multi-objective approaches can be drastically increased with respect to their corresponding original versions. This is specially interesting for solving complex problems involving a large number of variables, since the problem decomposition performed by the model at the island level allows for much faster executions (the number of variables to handle in every island is divided by the number of islands). We conduct a study on a real-world problem related to grid computing, the bi-objective robust scheduling problem of independent tasks. The goal in this problem is to minimize makespan (i.e., the time when the latest machine finishes its assigned tasks) and to maximize the robustness of the schedule (i.e., its tolerance to unexpected changes on the estimated time to complete the tasks). We propose a parallel, multithreaded implementation of the coevolutionary algorithms and we have analyzed the results obtained in terms of both the quality of the Pareto front approximations yielded by the techniques as well as the resulting speedups when running them on a multicore machine.
机译:本文介绍了三种最新的多目标进化算法的三个新的多目标协作革命变体,即非支配排序遗传算法II(NSGA-II),强度帕累托进化算法2(SPEA2)和多目标细胞遗传算法(MOCell)。在这样的协同进化体系结构中,总体被分为几个子种群或岛屿,每个子种群或岛屿负责通过使用原始的多目标算法来优化全局解决方案的一个子集。完整解决方案的评估是通过合作实现的,即所有子群体都共享其当前部分解决方案的子集。我们的目的是研究如何相对于其相应的原始版本大幅度提高协作式协同进化多目标方法的性能。这对于解决涉及大量变量的复杂问题特别有趣,因为模型在孤岛级别执行的问题分解允许更快的执行速度(每个孤岛中要处理的变量数除以孤岛数) 。我们对与网格计算相关的现实世界问题进行了研究,这是独立任务的双目标鲁棒调度问题。此问题的目标是最小化制造期(即最新机器完成其分配的任务的时间)并最大化计划的稳定性(即,其对完成任务的估计时间意外变化的容忍度)。我们提出了协进化算法的并行,多线程实现,并且我们已分析了该技术所产生的帕累托前沿近似值的质量以及在多核计算机上运行它们时的加速结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号