首页> 外文期刊>Computers & operations research >Enhancing the performance of hybrid genetic algorithms by differential improvement
【24h】

Enhancing the performance of hybrid genetic algorithms by differential improvement

机译:通过差分改进提高混合遗传算法的性能

获取原文
获取原文并翻译 | 示例

摘要

A differential improvement modification to Hybrid Genetic Algorithms is proposed. The general idea is to perform more extensive improvement algorithms on higher quality solutions. Our proposed Differential Improvement (DI) approach is of rather general character. It can be implemented in many different ways. The paradigm remains invariant and can be easily applied to a wider class of optimization problems. Moreover, the DI framework can also be used within other Hybrid metaheur-istics like Hybrid Scatter Search algorithms, Particle Swarm Optimization, or Bee Colony Optimization techniques. Extensive experiments show that the new approach enables to improve significantly the performance of Hybrid Genetic Algorithms without adding extra computer time. Additional experiments investigated the trade-off between the number of generations and the number of iterations of the improvement algorithm. These experiments yielded six new best known solutions to benchmark quadratic assignment problems. Many other variants of the proposed algorithm are suggested for future research.
机译:提出了一种对混合遗传算法的改进改进方法。总体思路是对更高质量的解决方案执行更广泛的改进算法。我们提出的差异改进(DI)方法具有一般性。它可以以许多不同的方式实现。该范例保持不变,可以轻松地应用于更广泛的优化问题。此外,DI框架还可以在其他混合元启发式方法中使用,例如混合散射搜索算法,粒子群优化或蜂群优化技术。大量的实验表明,该新方法能够显着提高混合遗传算法的性能,而无需增加额外的计算机时间。其他实验研究了改进算法的世代数与迭代数之间的权衡。这些实验产生了六个新的最著名的解决方案,以解决二次分配问题。提出的算法的许多其他变体建议用于未来研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号