首页> 外文期刊>Computers & operations research >Mean-CVaR portfolio selection: A nonparametric estimation framework
【24h】

Mean-CVaR portfolio selection: A nonparametric estimation framework

机译:均值-CVaR投资组合选择:非参数估计框架

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we use Conditional Value-at-Risk (CVaR) to measure risk and adopt the methodology of nonparametric estimation to explore the mean-CVaR portfolio selection problem. First, we obtain the estimated calculation formula of CVaR by using the nonparametric estimation of the density of the loss function, and formulate two nonparametric mean-CVaR portfolio selection models based on two methods of bandwidth selection. Second, in both cases when short-selling is allowed and forbidden, we prove that the two nonparametric mean-CVaR models are convex optimization problems. Third, we show that when CVaR is solved for, the corresponding VaR can also be obtained as a by-product. Finally, we present a numerical example with Monte Carlo simulations to demonstrate the usefulness and effectiveness of our results, and compare our nonparametric method with the popular linear programming method.
机译:在本文中,我们使用条件风险值(CVaR)衡量风险,并采用非参数估计的方法来探讨均值CVaR投资组合选择问题。首先,我们使用损失函数密度的非参数估计来获得CVaR的估计计算公式,并基于两种带宽选择方法来制定两个非参数均值-CVaR投资组合选择模型。其次,在允许和禁止卖空的两种情况下,我们证明了两个非参数均值CVaR模型是凸优化问题。第三,我们证明当求解CVaR时,也可以作为副产物获得相应的VaR。最后,我们用蒙特卡洛模拟给出一个数值示例,以证明我们的结果的有用性和有效性,并将我们的非参数方法与流行的线性规划方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号