首页> 外文期刊>Computers & operations research >BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems
【24h】

BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems

机译:BSTBGA:混合遗传算法,用于约束多目标优化问题

获取原文
获取原文并翻译 | 示例

摘要

Most of the existing multi-objective genetic algorithms were developed for unconstrained problems, even though most real-world problems are constrained. Based on the boundary simulation method and trie-tree data structure, this paper proposes a hybrid genetic algorithm to solve constrained multi-objective optimization problems (CMOPs). To validate our approach, a series of constrained multi-objective optimization problems are examined, and we compare the test results with those of the well-known NSGA-II algorithm, which is representative of the state of the art in this area. The numerical experiments indicate that the proposed method can clearly simulate the Pareto front for the problems under consideration.
机译:尽管大多数现实世界中的问题都受到约束,但大多数现有的多目标遗传算法都是针对不受约束的问题开发的。基于边界仿真方法和特里树数据结构,提出了一种混合遗传算法来解决约束多目标优化问题。为了验证我们的方法,研究了一系列受限的多目标优化问题,并将测试结果与著名的NSGA-II算法进行了比较,该算法代表了该领域的最新技术。数值实验表明,所提出的方法可以清楚地模拟所考虑问题的帕累托前沿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号