首页> 外文期刊>Computers & operations research >Solving software project scheduling problems with ant colony optimization
【24h】

Solving software project scheduling problems with ant colony optimization

机译:通过蚁群优化解决软件项目计划问题

获取原文
获取原文并翻译 | 示例

摘要

Software project scheduling problem (SPSP) is one of the important and challenging problems faced by the software project managers in the highly competitive software industry. As the problem is becoming an NP-hard problem with the increasing numbers of employees and tasks, only a few algorithms exist and the performance is still not satisfying. To design an effective algorithm for SPSP, this paper proposes an ant colony optimization (ACO) approach which is called ACS-SPSP algorithm. Since a task in software projects involves several employees, in this paper, by splitting tasks and distributing dedications of employees to task nodes we get the construction graph for ACO. Six domain-based heuristics are designed to consider the factors of task efforts, allocated dedications of employees and task importance. Among these heuristic strategies, the heuristic of allocated dedications of employees to other tasks performs well. ACS-SPSP is compared with a genetic algorithm to solve the SPSP on 30 random instances. Experimental results show that the proposed algorithm is promising and can obtain higher hit rates with more accuracy compared to the previous genetic algorithm solution.
机译:软件项目计划问题(SPSP)是竞争激烈的软件行业中软件项目经理面临的重要且具有挑战性的问题之一。随着员工和任务数量的增加,该问题已成为NP难题,因此仅存在少数算法,性能仍然不能令人满意。为了设计一种有效的SPSP算法,提出了一种蚁群优化(ACO)方法,称为ACS-SPSP算法。由于软件项目中的任务涉及多个员工,因此,通过拆分任务并将员工的奉献精神分配到任务节点,我们可以获得ACO的构造图。设计了六种基于域的启发式方法,以考虑任务努力,分配给员工的奉献精神和任务重要性的因素。在这些启发式策略中,分配给员工的奉献精神用于其他任务的启发式效果很好。将ACS-SPSP与遗传算法进行比较,以对30个随机实例求解SPSP。实验结果表明,与以前的遗传算法相比,该算法具有很好的应用前景,并且能够以更高的准确性获得更高的命中率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号