首页> 外文期刊>Computers & operations research >Optimizing frequent time-window selection for association rules mining in a temporal database using a variable neighbourhood search
【24h】

Optimizing frequent time-window selection for association rules mining in a temporal database using a variable neighbourhood search

机译:使用可变邻域搜索为时间数据库中的关联规则挖掘优化频繁的时间窗口选择

获取原文
获取原文并翻译 | 示例

摘要

In this study, we investigate the problem of maximum frequent time-window selection (MFTWS) that appears in the process of discovering association rules time-windows (ARTW). We formulate the problem as a mathematical model using integer programming that is a typical combination problem with a solution space exponentially related to the problem size. A variable neighbourhood search (VNS) algorithm is developed to solve the problem with near-optimal solutions. Computational experiments are performed to test the VNS algorithm against a benchmark problem set. The results show that the VNS algorithm is an effective approach for solving the MTFWS problem, capable of discovering many large-one frequent itemset with time-windows (FITW) with a larger time-coverage rate than the lower bounds, thus laying a good foundation for mining ARTW.
机译:在这项研究中,我们调查在发现关联规则时间窗口(ARTW)的过程中出现的最大频繁时间窗口选择(MFTWS)问题。我们使用整数编程将问题公式化为数学模型,这是一个典型的组合问题,其求解空间与问题大小呈指数关系。提出了一种可变邻域搜索(VNS)算法,以近乎最优的方法解决该问题。进行计算实验以针对基准问题集测试VNS算法。结果表明,VNS算法是一种有效的解决MTFWS问题的方法,能够发现许多大的具有时间窗口(FITW)的时间窗(FITW)频繁项集,从而具有比下界更大的时间覆盖率,从而奠定了良好的基础用于开采ARTW。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号