首页> 外文期刊>Computers & operations research >A biased random key genetic algorithm for the field technician scheduling problem
【24h】

A biased random key genetic algorithm for the field technician scheduling problem

机译:一种针对现场技术人员调度问题的有偏随机密钥遗传算法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses a problem that service companies often face: the field technician scheduling problem. The problem considers the assignment of a set of jobs or service tasks to a group of technicians. The tasks are in different locations within a city, with different time windows, priorities, and processing times. Technicians have different skills and working hours. The main objective is to maximize the sum of priority values associated with the tasks performed each day. Due to the complexity of this problem, constructive heuristics that explore specific characteristics of the problem are developed. A customized Biased Random Key Genetic Algorithm (BRKGA) is also proposed. Computational tests with 1040 instances are presented. The constructive heuristics outperformed a heuristic of the literature in 90% of the instances. In a comparative study with optimal solutions obtained for small-sized problems, the BRKGA reached 99% of the optimal values; for medium- and large-sized problems, the BRKGA provided solutions that are on average 3.6% below the upper bounds. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文解决了服务公司经常面临的一个问题:现场技术人员调度问题。问题考虑了将一组作业或服务任务分配给一组技术人员。任务位于城市中的不同位置,具有不同的时间窗口,优先级和处理时间。技术人员具有不同的技能和工作时间。主要目标是使与每天执行的任务相关的优先级值的总和最大化。由于此问题的复杂性,开发了探索该问题特定特征的构造启发式方法。还提出了一种定制的偏向随机密钥遗传算法(BRKGA)。提出了具有1040个实例的计算测试。在90%的情况下,建设性启发式方法优于文献启发式方法。在一项针对小型问题的最优解决方案的比较研究中,BRKGA达到了最优值的99%;对于中型和大型问题,BRKGA提供的解决方案平均比上限低3.6%。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号