首页> 外文期刊>Computers & operations research >Solving a bi-objective unrelated parallel batch processing machines scheduling problem: A comparison study
【24h】

Solving a bi-objective unrelated parallel batch processing machines scheduling problem: A comparison study

机译:解决双目标无关并行批处理机调度问题的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Nowadays in competitive markets, production organizations are looking to increase their efficiency and optimize manufacturing operations. In addition, batch processor machines (BPMs) are faster and cheaper to carry out operations; thus the performance of manufacturing systems is increased. This paper studies a production scheduling problem on unrelated parallel BPMs with considering the release time and ready time for jobs as well as batch capacity constraints. In unrelated parallel BPMs, modern machines are used in a production line side by side with older machines that have different purchasing costs; so this factor is introduced as a novel objective to calculate the optimum cost for purchasing various machines due to the budget. Thus, a new bi-objective mathematical model is presented to minimize the makespan (i.e., C-max), tardiness/earliness penalties and the purchasing cost of machines simultaneously. The presented model is first coded. and solved by the epsilon-constraint method. Because of the complexity of the NP-hard problem, exact methods are not able to optimally solve large-sized problems in a reasonable time. Therefore, we propose a multi-objective harmony search (MOHS) algorithm. the results are compared with the multi-objective particle swarm optimization (MOPSO), non-dominated sorting genetic algorithm (NSGA-II), and multi-objective ant colony optimization algorithm (MOACO). To tune their parameters, the Taguchi method is used. The results are compared by five metrics that show the effectiveness of the proposed MOHS algorithm compared with the MOPSO, NSGA-II and MOACO. At last, the sensitivity of the model is analyzed on new parameters and impacts of each parameter are illustrated on bi-objective functions. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在竞争激烈的市场中,生产组织正在寻求提高效率并优化制造操作。此外,批处理机(BPM)可以更快,更便宜地进行操作。因此,制造系统的性能得以提高。本文研究了不相关的并行BPM的生产调度问题,其中考虑了作业的发布时间和准备时间以及批处理能力约束。在无关的并行BPM中,现代机器在生产线中与购买成本不同的旧机器并排使用。因此,由于预算的原因,这个因素被引入来作为计算购买各种机器的最佳成本的新颖目标。因此,提出了一种新的双目标数学模型,以最小化制造期(即,C-max),拖延/早期惩罚和机器的购买成本。首先对提出的模型进行编码。并通过ε约束方法解决。由于NP难题的复杂性,精确的方法无法在合理的时间内最佳地解决大型问题。因此,我们提出了一种多目标和声搜索(MOHS)算法。将结果与多目标粒子群优化算法(MOPSO),非主导排序遗传算法(NSGA-II)和多目标蚁群优化算法(MOACO)进行比较。为了调整其参数,使用了Taguchi方法。通过五个指标对结果进行比较,这些指标显示了所提出的MOHS算法与MOPSO,NSGA-II和MOACO相比的有效性。最后,分析了模型对新参数的敏感性,并说明了每个参数对双目标函数的影响。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号