首页> 外文期刊>Computers & operations research >Integrating employee timetabling with scheduling of machines and transporters in a job-shop environment: A mathematical formulation and an Anarchic Society Optimization algorithm
【24h】

Integrating employee timetabling with scheduling of machines and transporters in a job-shop environment: A mathematical formulation and an Anarchic Society Optimization algorithm

机译:在车间环境中将员工时间表与机器和运输工具的调度相集成:数学公式和无政府状态优化算法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses a ternary-integration scheduling problem that incorporates employee timetabling into the scheduling of machines and transporters in a job-shop environment with a finite number of heterogeneous transporters where the objective is to minimize the completion time of all jobs. The problem is first formulated as a mixed-integer linear programming model. Then, an Anarchic Society Optimization (ASO) algorithm is developed to solve large-sized instances of the problem. The formulation is used to solve small-sized instances and to evaluate the quality of the solutions obtained for instances with larger sizes. A comprehensive numerical study is carried out to assess the performance of the proposed ASO algorithm. The algorithm is compared with three alternative metaheuristic algorithms. It is also compared with several algorithms developed in the literature for the integrated scheduling of machines and transporters. Moreover, the algorithms are tested on a set of adapted benchmark instances for an integrated problem of machine scheduling and employee timetabling. The numerical analysis suggests that the ASO algorithm is both effective and efficient in solving large-sized instances of the proposed integrated job shop scheduling problem. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文解决了三元集成调度问题,该问题将雇员时间表纳入了具有有限数量的异构运输者的车间环境中机器和运输者的调度中,目的是最大程度地减少所有作业的完成时间。首先将问题表述为混合整数线性规划模型。然后,开发了无政府状态优化(ASO)算法来解决该问题的大型实例。该公式用于解决小型实例并评估针对大型实例获得的解决方案的质量。进行了全面的数值研究,以评估所提出的ASO算法的性能。该算法与三种备选的元启发式算法进行了比较。还将它与文献中针对机器和运输机的集成调度开发的几种算法进行比较。此外,针对一组机器调度和员工时间表问题,在一组适应性基准实例上对算法进行了测试。数值分析表明,ASO算法在解决所提出的综合作业车间调度问题的大型实例方面既有效又高效。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号