首页> 外文期刊>Computers & operations research >A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing
【24h】

A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing

机译:半向量双层编程方法可优化电力动态使用时间的零售定价

获取原文
获取原文并翻译 | 示例

摘要

Presently, residential electricity consumers are, in general, charged at flat or dual time-of-use tariffs along the day, which are defined by the retailer for long periods (e.g., one year). These pricing schemes do not convey price signals reflecting generation costs and grid conditions. Hence, consumers lack the incentives to engage in different consumption patterns using the flexibility they generally have in the operation of some end-use loads. Dynamic tariffs, i.e. energy prices varying possibly with significant magnitude in short periods of time, are expected to become an applicable pricing scheme in smart grids. In this setting, home energy management systems can play an important role to help end-users optimizing the usage of appliances to minimize energy costs without compromising comfort. This can be advantageous also from the perspective of grid management.
机译:目前,一般来说,住宅用电者一天要按固定或双重使用时间收费,这是零售商定义的很长一段时间(例如一年)。这些定价方案无法传达反映发电成本和电网状况的价格信号。因此,消费者缺乏使用他们在某些最终用途负载的操作中通常具有的灵活性来从事不同消费模式的动机。动态关税,即能源价格在短期内可能会发生很大变化,预计将成为智能电网中适用的定价方案。在这种情况下,家庭能源管理系统可以发挥重要作用,以帮助最终用户优化电器的使用,以在不损害舒适性的前提下将能源成本降至最低。从网格管理的角度来看,这也是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号