首页> 外文期刊>Computers & operations research >Partial objective inequalities for the multi-item capacitated lot-sizing problem
【24h】

Partial objective inequalities for the multi-item capacitated lot-sizing problem

机译:多项目容量批量问题的部分客观不等式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study a mixed-integer programming model of the single-level multi-item capacitated lot-sizing problem (MCLSP), which incorporates shared capacity on the production of items for each period throughout a planning horizon. We derive valid bounds on the partial objective function of the MCLSP formulation by solving the first t periods of the problem over a subset of all items, using dynamic programming and integer programming techniques. We also develop algorithms for strengthening these valid inequalities by back-lifting techniques. These inequalities can be utilized within a cutting-plane algorithm, in which we perturb the partial objective function coefficients to identify violated inequalities to the MCLSP polytope. Our computational results show that the envelope inequalities are very effective for the MCLSP instances with different capacity and cost characteristics, when compared to the (l, S) inequalities. (C) 2017 Elsevier Ltd. All rights reserved.
机译:在本文中,我们研究了单级多项目容量批量问题(MCLSP)的混合整数规划模型,该模型将整个计划期间每个阶段的项目生产共享容量合并在一起。通过使用动态编程和整数编程技术,通过在所有项目的子集上解决问题的前t个周期,我们得出MCLSP公式的部分目标函数的有效界限。我们还开发了通过反向提升技术来增强这些有效不等式的算法。这些不等式可以在切平面算法中使用,在该算法中,我们干扰部分目标函数系数,以标识违反MCLSP多义性的不等式。我们的计算结果表明,与(l,S)不等式相比,包络不等式对于具有不同容量和成本特征的MCLSP实例非常有效。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号