首页> 外文期刊>Computers & mathematics with applications >An infinite family of one-step iterators for solving nonlinear equations to increase the order of convergence and a new algorithm of global convergence
【24h】

An infinite family of one-step iterators for solving nonlinear equations to increase the order of convergence and a new algorithm of global convergence

机译:求解非线性方程以增加收敛阶数的无穷个单步迭代器族和全局收敛的新算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present an infinite family of one-step iterative formulas for solving nonlinear equations (Present Method One), from now on PMI, that can be expressed as x_(n+1)= F_m(x_n), with 1 ≤ m < ∞, integer, F_m being functions to be built later, in such a way that the velocity of convergence of such iterations increases more and more as m goes to infinity; in other words: given an arbitrary integer m_0 ≥ 1, we will prove that the corresponding iteration formula of the family,x_(n+1)= F_(m0)(x_n), has an order of convergence m_0 + 1. The increment of the velocity of convergence of the sequence of the iterator family x_(n+1)= F_m(x_n) with respect to the previous one x_(n+1) = F_m(x_n) is attained at the expense of one derivative evaluation more. Besides, we introduce a new algorithm (Present Method Two), from now on PMII, that plays the role of seeker for an initial value to guarantee the local convergence of the PMI. Both of them can be combined as an algorithm of global convergence, included the case of singular roots, that does not depend on the chosen initial value, and that allows to find all the roots in a feasible interval in a general and complete way. These are, in my opinion, the main results of this work.
机译:在本文中,从现在开始,我们提出了一个无穷的一阶迭代公式,用于求解非线性方程(存在方法一),可以表示为x_(n + 1)= F_m(x_n),其中1≤m <∞,整数,F_m是稍后要建立的函数,其方式是随着m趋于无穷大,这种迭代的收敛速度越来越大;换句话说:给定任意整数m_0≥1,我们将证明族的相应迭代公式x_(n + 1)= F_(m0)(x_n)的收敛阶为m_0 + 1。迭代器族x_(n + 1)= F_m(x_n)的序列相对于前一个x_(n + 1)= F_m(x_n)的收敛速度的提高,是以一次导数评估为代价的。此外,从现在开始,我们引入了一种新的算法(现在的方法二),该算法起着寻求初始值的作用,以保证PMI的局部收敛。两者都可以组合为全局收敛算法,包括奇异根的情况,它不依赖于所选的初始值,并且允许以通用且完整的方式在可行的区间内找到所有根。我认为,这些是这项工作的主要成果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号