首页> 外文期刊>Computers & mathematics with applications >Robust algebraic multilevel preconditioning in H(curl) and H(div)
【24h】

Robust algebraic multilevel preconditioning in H(curl) and H(div)

机译:H(curl)和H(div)中的鲁棒代数多级预处理

获取原文
获取原文并翻译 | 示例

摘要

An algebraic multilevel iteration method for solving a system of linear algebraic equations arising in H(curl) and H(div) spaces is presented. The algorithm is developed for the discrete problem obtained by using the space of lowest-order Nedelec and Raviart-Thomas-Nedelec elements. The theoretical analysis of the method is based only on some algebraic sequences and generalized eigenvalues of local (element-wise) problems. In the hierarchical basis framework, explicit recursion formulas are derived to compute the element matrices and the constant γ (which measures the quality of the space splitting) at any given level. It is proved that the proposed method is robust with respect to the problem parameters and is of optimal order complexity. Supporting numerical results, including the case when the parameters have jumps, are also presented.
机译:提出了一种求解H(curl)和H(div)空间中的线性代数方程组的代数多级迭代方法。针对使用最小阶Nedelec和Raviart-Thomas-Nedelec元素的空间获得的离散问题,开发了该算法。该方法的理论分析仅基于局部代数问题的一些代数序列和广义特征值。在分层基础框架中,导出了明确的递归公式,以计算任意给定级别的元素矩阵和常数γ(用于测量空间划分的质量)。实践证明,该方法相对于问题参数具有鲁棒性,并且具有最优的阶次复杂度。还提供了支持的数值结果,包括参数有跳跃的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号