首页> 外文期刊>Computers & mathematics with applications >Playing with complexity: From cellular evolutionary algorithms with coalitions to self-organizing maps
【24h】

Playing with complexity: From cellular evolutionary algorithms with coalitions to self-organizing maps

机译:发挥复杂性:从具有联盟的细胞进化算法到自组织图

获取原文
获取原文并翻译 | 示例

摘要

Since its origins. Cellular Automata (CA) has been used to model many type of physical and computational phenomena. Interacting CAs in spatial lattices combined with evolutionary game theory have been very popular for modeling genetics or behavior in biological systems. Cellular Evolutionary Algorithms (cEAs) are a kind of evolutionary algorithm (EA) with decentralized population in which interactions among individuals are restricted to the closest ones. The use of decentralized populations in EAs allows to keep the population diversity for longer, usually resulting in a better exploration of the search space and, therefore in a better performance of the algorithm. A new adaptive technique (EACO) based on Cellular Automata, Came Theory and Coalitions uses dynamic neighborhoods to enhance the quality of cEAs. In this article we compare the characteristics EACO with classical Self-organizing Maps (SOM), and we discuss the possibilities for using Came Theory and Coalitions in the SOM scenario.
机译:自其起源。元胞自动机(Cellular Automata(CA))已用于对多种类型的物理和计算现象进行建模。与进化博弈论相结合的空间格中的交互CA已非常流行用于对生物系统中的遗传学或行为进行建模。细胞进化算法(cEAs)是一种具有分散种群的进化算法(EA),其中个体之间的相互作用被限制为最接近的。在EA中使用分散的种群可以使种群多样性保持更长的时间,通常可以更好地探索搜索空间,从而提高算法的性能。基于元胞自动机,卡梅理论和联盟的一种新的自适应技术(EACO)使用动态邻域来提高cEA的质量。在本文中,我们将EACO的特征与经典的自组织映射(SOM)进行了比较,并讨论了在SOM场景中使用Came理论和联盟的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号